富佳,李欣美,李然.Hardy空间上一类$m$-复对称Toeplitz算子[J].数学研究及应用,2024,44(1):63~80
Hardy空间上一类$m$-复对称Toeplitz算子
A Class of $m$-Complex Symmetric Operators on Hardy Space
投稿时间:2023-03-23  修订日期:2023-08-12
DOI:10.3770/j.issn:2095-2651.2024.01.007
中文关键词:  $m$-复对称Toeplitz算子  Toeplitz算子  Hardy空间
英文关键词:$m$-complex symmetric operator  Toeplitz operator  Hardy space
基金项目:国家自然科学基金(Grant No.11901269), 辽宁省教育厅面上项目(Grant No.JYTMS20231041).
作者单位
富佳 辽宁师范大学数学学院 辽宁 大连 116029 
李欣美 辽宁师范大学数学学院 辽宁 大连 116029 
李然 辽宁师范大学数学学院 辽宁 大连 116029 
摘要点击次数: 352
全文下载次数: 281
中文摘要:
      本文主要研究Toeplitz算子相对于一对置换的共轭算子是2-复对称的充要条件. 首先在经典的Hardy空间上介绍一类被称为一对置换的共轭算子, 其次完整地刻画了在这类共轭算子下Toeplitz算子是2-复对称的结构, 利用Toeplitz算子在Hardy空间的经典正规正交基下的矩阵表示来刻画2-复对称Toeplitz算子. 最后对于Toeplitz算子分别补充前提$f_n=-f_{-n}$和$f_n=f_{-n}$, 得到了更简化的结果. 在第二个前提下, 研究Toeplitz算子的3-复对称性, 得到$T_f$关于$C_{(i,j)}$是3-CSO的结果和是2-CSO相同.
英文摘要:
      In this paper, we study the necessary and sufficient condition that the Toeplitz operators with respect to the conjugations of one permutation are $2$-complex symmetric. Firstly, we introduce a class of conjugations called the conjugations of one permutations on the classical Hardy space. Secondly, Toeplitz operators are completely characterized as $2$-complex symmetric structure under this class of conjugations. The matrix representation of Toeplitz operators in the classical regular orthogonal basis on Hardy space is used to describe this class of $2$-complex symmetric Toeplitz operators. Finally, we add two preconditions $ f_n=-f_{-n}$ and $ f_n=f_{-n}$ respectively to the Toeplitz operators, and we get more simplified results. Under the second condition, we study the $3$-complex symmetry of Toeplitz operators, and we get the same result for $T_f$ is a 3-$CSO$ with the conjugation $C_{(i,j)}$ and 2-$CSO$'s.
查看全文  查看/发表评论  下载PDF阅读器