杨帆,徐建明,李晓晓.双调和方程柯西问题的修正的Tikhonov正则化方法[J].数学研究及应用,2024,44(3):359~386
双调和方程柯西问题的修正的Tikhonov正则化方法
A Modified Tikhonov Regularization Method for a Cauchy Problem of the Biharmonic Equation
投稿时间:2023-04-21  修订日期:2024-01-08
DOI:10.3770/j.issn:2095-2651.2024.03.008
中文关键词:  双调和方程  反问题  柯西问题  Tikhonov正则化方法
英文关键词:Biharmonic equations  inverse problem  Cauchy problem  Tikhonov regularization method
基金项目:国家自然科学基金(Grant No.11961044)
作者单位
杨帆 兰州理工大学理学院, 甘肃 兰州 730050 
徐建明 兰州理工大学理学院, 甘肃 兰州 730050 
李晓晓 兰州理工大学理学院, 甘肃 兰州 730050 
摘要点击次数: 342
全文下载次数: 361
中文摘要:
      本文研究了双调和方程柯西问题,这类是不适定的,即问题的解(如果存在)不连续依赖于测量数据.首先在精确解的先验假设下给出问题的条件稳定性结果.接着利用修正的Tikhonov正则化方法求解此不适定问题.在先验和后验正则化参数选取规则下,给出正则解和精确解之间的误差估计式.最后给出几个数值例子验证此正则化方法求解此类反问题的有效性.
英文摘要:
      In this paper, the Cauchy problem of biharmonic equation is considered. This problem is ill-posed, i.e., the solution (if exists) does not depend on the measurable data. Firstly, we give the conditional stability result under the a priori bound assumption for the exact solution. Secondly, a modified Tikhonov regularization method is used to solve this ill-posed problem. Under the a priori and the a posteriori regularization parameter choice rule, the error estimates between the regularization solutions and the exact solution are obtained. Finally, some numerical examples are presented to verify that our method is effective.
查看全文  查看/发表评论  下载PDF阅读器