刘海林,钟丽萍,陈守双,马玉龙.$m(G)-d(G)=1$的有限可解群$G$[J].数学研究及应用,2025,45(1):33~38
$m(G)-d(G)=1$的有限可解群$G$
On Finite Solvable Groups $G$ with $m(G)-d(G)=1$
投稿时间:2024-07-14  修订日期:2024-10-11
DOI:10.3770/j.issn:2095-2651.2025.01.004
中文关键词:  有限可解群  极小生成集  正规子群  循环群
英文关键词:finite solvable group  minimal generating set  normal subgroup  cyclic group
基金项目:国家留学基金委(Grant No.202208360148), 国家自然科学基金(Grant Nos.12126415; 12261042; 12301026), 江西省自然科学基金(Grant No.20232BAB211006).
作者单位
刘海林 江西理工大学理学院, 江西 赣州 341000 
钟丽萍 江西理工大学理学院, 江西 赣州 341000 
陈守双 江西理工大学理学院, 江西 赣州 341000 
马玉龙 西北大学数学学院, 陕西 西安 710127 
摘要点击次数: 45
全文下载次数: 72
中文摘要:
      设$G$是有限群. $G$的生成集$X$称作是极小的如果$X$没有真子集生成$G$. 设$d(G)$和$m(G)$分别表示$G$的极小生成集所含元素的最小数和最大数.本文刻画了满足$m(G)-d(G)=1$, 且对任意非平凡正规子群$N$均有$m(G)\geq m(G/N)+m(N)$的有限可解群$G$.
英文摘要:
      Let $G$ be a finite group. A generating set $X$ of $G$ is said to be minimal if no proper subset of $X$ generates $G$. Let $d(G)$ and $m(G)$ denote the smallest size and the largest size of a minimal generating set of $G$, respectively. In this paper we present a characterization for finite solvable groups $G$ such that $m(G)-d(G)=1$ and $m(G)\geq m(G/N)+m(N)$ for any non-trivial normal subgroup $N$ of $G$.
查看全文  查看/发表评论  下载PDF阅读器