张海彬,张勇,丁雪.1-相依假设下最大点间距离的极限定律[J].数学研究及应用,2025,45(1):105~124
1-相依假设下最大点间距离的极限定律
Limit Laws for the Maximum Interpoint Distance under a 1-Dependent Assumption
投稿时间:2024-03-29  修订日期:2024-09-02
DOI:10.3770/j.issn:2095-2651.2025.01.009
中文关键词:  最大点间距离  极值分布  Chen-Stein泊松逼近  中偏差  1-相依
英文关键词:maximum interpoint distance  extreme-value distribution  Chen-Stein Poisson approximation  moderation deviation  1-dependent
基金项目:国家自然科学基金(Grant Nos.12171198; 11771178),吉林省教育厅“十四五”科技项目(Grant No.JJKH20241239KJ),中央高校基本科研业务费.
作者单位
张海彬 吉林大学数学学院, 吉林 长春 130012 
张勇 吉林大学数学学院, 吉林 长春 130012 
丁雪 吉林大学数学学院, 吉林 长春 130012 
摘要点击次数: 44
全文下载次数: 56
中文摘要:
      设$\mathcal{M}_{n,p}=( X_{i,k})_{n \times p}$是一个$n\times p$随机矩阵,其$p$列$\boldsymbol{X}^{(1)},\ldots,\boldsymbol{X}^{(p)}$是来自$n$维1-相依高斯总体的独立同分布随机样本.我们不再研究$p$和$n$可比的特殊情形,而是考虑一个更一般的情形,其中$\log_{}{n}=o ( p^{1/3})$.我们证明了最大点间距离$M_{n}=\max\{\vert \boldsymbol{X}_{i}-\boldsymbol{X}_{j}\vert; 1\le i< j\le n\}$收敛到一个极值分布,其中$\boldsymbol{X}_{i}$和$\boldsymbol{X}_{j}$分别表示$\mathcal{M}_{n,p}$的第$i$行和第$j$行.证明过程利用了Chen-Stein泊松逼近方法和中等偏差原理.
英文摘要:
      Let $\mathcal{M} _{n,p}=(X_{i,k})_{n \times p}$ be an $n \times p$ random matrix whose $p$ columns $\boldsymbol{X}^{(1)},\ldots,\boldsymbol{X}^{(p)}$ are an $n$-dimensional i.i.d. random sample of size $p$ from 1-dependent Gaussian populations. Instead of investigating the special case where $p$ and $n$ are comparable, we consider a much more general case in which $\log_{}{n}=o(p^{1/3})$. We prove that the maximum interpoint distance $M_{n}=\max\{\vert \boldsymbol{X}_{i}-\boldsymbol{X}_{j}\vert; 1\le i< j\le n\}$ converges to an extreme-value distribution, where $\boldsymbol{X}_{i}$ and $\boldsymbol{X}_{j}$ denote the $i$-th and $j$-th row of $\mathcal{M}_{n,p}$, respectively. The proofs are completed by using the Chen-Stein Poisson approximation method and the moderation deviation principle.
查看全文  查看/发表评论  下载PDF阅读器