A. Nourou ISSA.On Quadratic Left Leibniz Algebras and Related Lie-Yamaguti Structures[J].数学研究及应用,2025,45(2):152~162
On Quadratic Left Leibniz Algebras and Related Lie-Yamaguti Structures
On Quadratic Left Leibniz Algebras and Related Lie-Yamaguti Structures
投稿时间:2024-08-26  修订日期:2024-12-02
DOI:10.3770/j.issn:2095-2651.2025.02.002
中文关键词:  Leibniz algebra  $T^*$-extension  Lie-Yamaguti algebra
英文关键词:Leibniz algebra  $T^*$-extension  Lie-Yamaguti algebra
基金项目:
作者单位
A. Nourou ISSA D\'epartement de Math\'ematiques, Universit\'e d'Abomey-Calavi, 01 BP 4521 Cotonou 01, B\'enin 
摘要点击次数: 100
全文下载次数: 68
中文摘要:
      A left Leibniz algebra equipped with an invariant nondegenerate skew-symmetric bilinear form (i.e., a skew-symmetric quadratic Leibniz algebra) is constructed. The notion of $T^*$-extension of Lie-Yamaguti algebras is introduced and it is observed that the trivial extension of a Lie-Yamaguti algebra is a quadratic Lie-Yamaguti algebra. It is proved that every symmetric (resp., skew-symmetric) quadratic Leibniz algebra induces a quadratic (resp., symplectic) Lie-Yamaguti algebra.
英文摘要:
      A left Leibniz algebra equipped with an invariant nondegenerate skew-symmetric bilinear form (i.e., a skew-symmetric quadratic Leibniz algebra) is constructed. The notion of $T^*$-extension of Lie-Yamaguti algebras is introduced and it is observed that the trivial extension of a Lie-Yamaguti algebra is a quadratic Lie-Yamaguti algebra. It is proved that every symmetric (resp., skew-symmetric) quadratic Leibniz algebra induces a quadratic (resp., symplectic) Lie-Yamaguti algebra.
查看全文  查看/发表评论  下载PDF阅读器