A. Nourou ISSA.On Quadratic Left Leibniz Algebras and Related Lie-Yamaguti Structures[J].数学研究及应用,2025,45(2):152~162 |
On Quadratic Left Leibniz Algebras and Related Lie-Yamaguti Structures |
On Quadratic Left Leibniz Algebras and Related Lie-Yamaguti Structures |
投稿时间:2024-08-26 修订日期:2024-12-02 |
DOI:10.3770/j.issn:2095-2651.2025.02.002 |
中文关键词: Leibniz algebra $T^*$-extension Lie-Yamaguti algebra |
英文关键词:Leibniz algebra $T^*$-extension Lie-Yamaguti algebra |
基金项目: |
|
摘要点击次数: 100 |
全文下载次数: 68 |
中文摘要: |
A left Leibniz algebra equipped with an invariant nondegenerate skew-symmetric bilinear form (i.e., a skew-symmetric quadratic Leibniz algebra) is constructed. The notion of $T^*$-extension of Lie-Yamaguti algebras is introduced and it is observed that the trivial extension of a Lie-Yamaguti algebra is a quadratic Lie-Yamaguti algebra. It is proved that every symmetric (resp., skew-symmetric) quadratic Leibniz algebra induces a quadratic (resp., symplectic) Lie-Yamaguti algebra. |
英文摘要: |
A left Leibniz algebra equipped with an invariant nondegenerate skew-symmetric bilinear form (i.e., a skew-symmetric quadratic Leibniz algebra) is constructed. The notion of $T^*$-extension of Lie-Yamaguti algebras is introduced and it is observed that the trivial extension of a Lie-Yamaguti algebra is a quadratic Lie-Yamaguti algebra. It is proved that every symmetric (resp., skew-symmetric) quadratic Leibniz algebra induces a quadratic (resp., symplectic) Lie-Yamaguti algebra. |
查看全文 查看/发表评论 下载PDF阅读器 |