刘玉记.具分片常变量泛函微分方程的全局稳定性[J].数学研究及应用,2001,21(1):31~36
具分片常变量泛函微分方程的全局稳定性
Global Stability in a Differential Equation with Piecewisely Constant Arguments
投稿时间:1998-03-01  
DOI:10.3770/j.issn:1000-341X.2001.01.006
中文关键词:  
英文关键词:differential equation  global stability  piecewise constant argument
基金项目:
作者单位
刘玉记 岳阳师范学院数学系湖南 414000 
摘要点击次数: 1875
全文下载次数: 1206
中文摘要:
      本文研究具分片常变量泛函微分方程,其中[·]表示取整函数,r(t)∈C([0,+c),(0,+c)),Pi∈[0,+c),(i=1,2,…,m),Pm>0,文中给出了保证方程的每一满足初始条件N(0)=N0>0,N(-j)=N-j≥0(j=1,2,…,m),的解N(t)满足limt→∞N(t)=N*的一些新的充分条件.
英文摘要:
      In this paper we consider the differential equation with piecewisely constant arguments,where [·] denotes the greates integer function, r(t) ∈ C([0,+∞),(0,+∞)),Pi ∈ [0, +∞)(i = 1, 2,..., m), with Pm> 0, we establish some new sufficient conditions for an arbitrary solution N(t) to satisfy the initial conditions of the form N(0) = N0> 0 and N(-j) = N-j≥0, j = 1, 2,., m,to converge to the positive equilibrium N* as t →∞.
查看全文  查看/发表评论  下载PDF阅读器