孙立娜,封玥,刘元元,张然.求解Brinkman方程的修正弱有限元方法[J].数学研究及应用,2019,39(6):657~676
求解Brinkman方程的修正弱有限元方法
The Modified Weak Galerkin Finite Element Method for Solving Brinkman Equations
投稿时间:2019-09-17  修订日期:2019-10-25
DOI:10.3770/j.issn:2095-2651.2019.06.011
中文关键词:  Brinkman方程  修正弱Galerkin有限元方法  离散弱梯度
英文关键词:the Brinkman equations  the modified weak Galerkin finite element method  discrete weak gradient
基金项目:国家自然科学基金(Grant Nos.91630201; U1530116; 11726102; 11771179; 11701210), 吉林省教育厅“十三五”科学研究规划项目(Grant No.JJKH20180113KJ), 吉林省科技发展计划项目(Grant No. 20190103029JH), 符号计算与知识工程教育部重点实验室项目基金(Grant No.93K172018Z01).
作者单位
孙立娜 吉林大学数学学院, 吉林 长春 130012 
封玥 吉林大学数学学院, 吉林 长春 130012 
刘元元 北京应用物理与计算数学研究所, 北京 100083 
张然 吉林大学数学学院, 吉林 长春 130012 
摘要点击次数: 677
全文下载次数: 512
中文摘要:
      本文针对Brinkman方程引入了一种修正弱Galerkin(MWG)有限元方法.我们通过具有两个离散弱梯度算子的变分形式来逼近模型. 在MWG方法中, 分别用次数为$k$和$k-1$的不连续分段多项式来近似速度函数$u$和压力函数$p$. MWG方法的主要思想是用内部函数的平均值代替边界函数. 因此, 与WG方法相比, MWG方法在不降低准确性的同时, 具有更少的自由度, 对于任意次数不超过$k-1$ 的多项式,MWG方法均可以满足稳定性条件. MWG 方法具有高度的灵活性, 它允许在具有一定形状正则性的任意多边形或多面体上使用不连续函数. 针对$H^1$和$L^22$范数下的速度和压力近似解, 建立了最优阶误差估计. 数值算例表明了该方法的准确性, 收敛性和稳定性.
英文摘要:
      A modified weak Galerkin (MWG) finite element method is introduced for the Brinkman equations in this paper. We approximate the model by the variational formulation based on two discrete weak gradient operators. In the MWG finite element method, discontinuous piecewise polynomials of degree $k$ and $k-1$ are used to approximate the velocity $\textbf{\textit{u}}$ and the pressure $p$, respectively. The main idea of the MWG finite element method is to replace the boundary functions by the average of the interior functions. Therefore, the MWG finite element method has fewer degrees of freedom than the WG finite element method without loss of accuracy. The MWG finite element method satisfies the stability conditions for any polynomial with degree no more than $k-1$. The MWG finite element method is highly flexible by allowing the use of discontinuous functions on arbitrary polygons or polyhedra with certain shape regularity. Optimal order error estimates are established for the velocity and pressure approximations in $H^1$ and $L^2$ norms. Some numerical examples are presented to demonstrate the accuracy, convergence and stability of the method.
查看全文  查看/发表评论  下载PDF阅读器