Quas-central semicommutative rings
Quas-central semicommutative rings
Received:June 27, 2022  Revised:June 27, 2022
DOI:
中文关键词:  
英文关键词:central semicommutative rings  quasi-central semicommutative rings  duo rings
基金项目:
Author NameAffiliationAddress
chen weixing School of Mathematics and Information Science, Shandong Institute of Business and Technology 山东工商学院数学与信息科学学院
wang yingying School of Mathematics and Information Science, Shandong Institute of Business and Technology 山东工商学院数学与信息科学学院
Hits: 164
Download times: 0
中文摘要:
      
英文摘要:
      A ring $R$ is said to be quasi-central semicommutative (simply, a QCS ring) if $ab=0$ implies $aRb\subseteq Q(R)$ for $a,b\in R$, where $Q(R)$ is the quasi-center of $R$. It is proved that if $R$ is a QCS ring, then the set of nilpotent elements of $R$ coincides with its Wedderburn radical, and that the upper triangular matrix ring $R=T_n(S)$ for $n\geq 2$ is a QCS ring if and only if $n=2$ and $S$ is a duo ring, while $T_{2k+2}^k(R)$ is a QCS ring when $R$ is a reduced duo ring.
  View/Add Comment  Download reader