n-Gorenstein Projective Modules and Dimensions over
Frobenius Extensions

Miao WANG, Zhanping WANG*
Department of Mathematics, Northwest Normal University, Gansu 730070, P. R. China

Abstract In this paper, we study n-Gorenstein projective modules over Frobenius extensions
and n-Gorenstein projective dimensions over separable Frobenius extensions. Let \(R \subset A \) be a
Frobenius extension of rings and \(M \) any left \(A \)-module. It is proved that \(M \) is an n-Gorenstein
projective left \(A \)-module if and only if \(A \otimes_R M \) and \(\text{Hom}_R(A, M) \) are n-Gorenstein projective
left \(A \)-modules if and only if \(M \) is an n-Gorenstein projective left \(R \)-module. Furthermore, when
\(R \subset A \) is a separable Frobenius extension, n-Gorenstein projective dimensions are considered.

Keywords Frobenius extensions; n-Gorenstein projective modules; n-Gorenstein projective
dimensions

MR(2020) Subject Classification 13B02; 16G50; 18G25

1. Introduction

The study of Gorenstein homological algebra stems from finitely generated modules of G-
dimensions zero over any noetherian rings, introduced by Auslander and Bridger [1] in 1969 as
a generalization of finite generated projective modules. In order to complete the analogy, in
1995, Enochs and Jenda introduced the Gorenstein projective modules (not necessarily finitely
generated) over any associative rings; and dually, Gorenstein injective modules were defined
in [2]. In 2004, Holm further studied the properties of these modules in [3]. In 2015, n-Gorenstein
projective modules and n-Gorenstein injective modules were introduced by Tang in [4] as a generalization
of these modules. Tang used these two classes of modules to give a new characterization
of Gorenstein rings in terms of top local cohomology modules of flat modules.

The theory of Frobenius extensions was developed by Kasch [5] in 1954 as a generalization
of Frobenius algebras, and was further studied by Nakayama and Tsuzuku [6, 7] in 1960–1961,
properties of modules and Gorenstein homological dimensions along Frobenius extensions of
rings in [10, 11].

Inspired by above conclusions, in this paper, we intend to study the n-Gorenstein projective
properties of modules and n-Gorenstein homological dimensions along Frobenius extensions of
rings.

Received February 16, 2020; Accepted September 26, 2020
Supported by the National Natural Science Foundation of China (Grant No. 11561061).
* Corresponding author
E-mail address: 513131292@qq.com (Miao WANG); wangzp@nwnu.edu.cn (Zhanping WANG)
Throughout this paper, let R be an associative ring with identity. All modules will be unitary left R-modules. We write $P(R)$ and $GP(R)$ for the classes of projective and Gorenstein projective left R-modules, respectively. For each positive integer n and the class of modules \mathcal{X}, we denote by $\perp^n \mathcal{X} := \{M|\text{Ext}^i_R(M, X) = 0\text{ for any }X \in \mathcal{X},\text{ and }1 \leq i \leq n\}$.

2. n-Gorenstein projective modules over Frobenius extensions

As a generalization of Gorenstein projective modules, Tang defined n-Gorenstein projective modules in [4].

Definition 2.1 Suppose that n is a positive integer. An R-module M is said to be n-Gorenstein projective, if there exists an acyclic complex of projective modules $P = \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow P_{-1} \rightarrow P_{-2} \rightarrow \cdots$ such that $M \cong \text{Im}(P_0 \rightarrow P_{-1})$ and such that for any projective module Q the complex $\text{Hom}_R(P, Q) = \cdots \rightarrow P_1^* \rightarrow P_0^* \rightarrow P_{-1}^* \rightarrow P_{-2}^* \rightarrow \cdots$ is exact at P_i^* for all $i \geq -n$, where $P_i^* = \text{Hom}_R(P_{i-1}, Q)$. The class of n-Gorenstein projective modules is denoted by $n\text{-GP}(R)$.

Clearly, by the definitions we have $P(R) \subseteq GP(R) \subseteq n\text{-GP}(R)$. However, there are n-Gorenstein projective modules which are not Gorenstein projective by [4, Example 2.4].

Lemma 2.2 ([4, Proposition 2.2]) Suppose that M is an R-module, and m, n are positive integers such that $m < n$, then the following statements hold.

1. M is n-Gorenstein projective if and only if M belongs to the class $\perp_n P(R)$, and admits a co-proper right $P(R)$-resolution.

2. n-Gorenstein projective modules are m-Gorenstein projective modules.

3. $GP(R) = \bigcap_{n=1}^{\infty} n\text{-GP}(R)$.

4. If M is n-Gorenstein projective, then there is an exact sequence $0 \rightarrow M \rightarrow P \rightarrow G \rightarrow 0$ such that P is projective and G is $(n+1)$-Gorenstein projective.

Lemma 2.3 ([4, Proposition 2.6 and Corollary 2.7]) $n\text{-GP}(R)$ is closed under direct sums, direct summands and extensions.

Lemma 2.4 ([4, Corollary 3.2]) Let $0 \rightarrow G_1 \rightarrow G \rightarrow M \rightarrow 0$ be an exact sequence, where G and G_1 are n-Gorenstein projective and $\text{Ext}^1(M, Q) = 0$ for all projective modules Q. Then M is n-Gorenstein projective.

Definition 2.5 ([9, Definition 1.1 and Theorem 1.2]) A ring extension $R \subset A$ is a Frobenius extension, which provided that one of the following equivalent conditions holds:

1. The functors $T = A \otimes_R -$ and $H = \text{Hom}_R(A, -)$ are naturally equivalent.

2. RA is finite generated projective and $\text{Ext}^1_A(R, A) = \text{Hom}_R(RA, A)$.

3. RA is finite generated projective and $\text{Ext}^1_A(R, A) = \text{Hom}_R(RA, A)$.

Example 2.6 ([9, Definition 1.1 and Theorem 1.2]) (1) For a finite group G, $\mathbb{Z} \subset \mathbb{Z}G$ is a Frobenius extension.

(2) ([11, Lemma 3.1]) Let R be an arbitrary ring, and $A = R[x]/(x^2)$ is the quotient of the
polynomial ring, where \(x \) is a variable which is supposed to commute with all the elements of \(R \). Then the ring extension \(R \subseteq A \) is a Frobenius extension.

In [11], Ren studied the Gorenstein projective properties of modules along Frobenius extensions of rings. Let \(M \) be any left \(A \)-module. It is proved that \(M \) is a Gorenstein projective left \(A \)-module if and only if \(M \) is a Gorenstein projective left \(R \)-module if and only if \(A \otimes_R M \) and \(\text{Hom}_R(A, M) \) are Gorenstein projective left \(A \)-modules. Analogously, we have the following conclusions for \(n \)-Gorenstein projective modules.

Proposition 2.7 Let \(R \subseteq A \) be a Frobenius extension of rings and \(M \) a left \(A \)-module. If \(A,M \) is \(n \)-Gorenstein projective, then the underlying left \(R \)-module \(R,M \) is also \(n \)-Gorenstein projective.

Proof Let \(M \) be an \(n \)-Gorenstein projective left \(A \)-module. There exists an acyclic complex of projective left \(A \)-module \(P = \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow P_{-1} \rightarrow P_{-2} \rightarrow \cdots \) such that \(M \cong \text{Im}(P_0 \rightarrow P_{-1}) \) and for any projective left \(A \)-module \(Q \) the complex \(\text{Hom}_A(P,Q) = \cdots \rightarrow P_i^* \rightarrow P_0^* \rightarrow P_{-1}^* \rightarrow P_{-2}^* \rightarrow \cdots \) is exact at \(P_i^* \) for all \(i \geq -n \), where \(P_i^* = \text{Hom}_A(P_{-i},Q) \). Note that each \(P_i \) is a projective left \(R \)-module. Then by restricting \(P \) one gets an acyclic complex of projective \(R \)-modules.

Let \(F \) be a projective left \(R \)-module. It follows from isomorphisms \(\text{Hom}_R(A,F) \cong A \otimes_R F \) that \(\text{Hom}_R(A,F) \) is a projective left \(A \)-module. Then the complex

\[
\text{Hom}_A(P, \text{Hom}_R(A,F)) = \cdots \rightarrow T_i^* = \text{Hom}_A(P_{-i}, \text{Hom}_R(A,F)) \rightarrow T_{-1}^* \rightarrow T_{-2}^* \rightarrow \cdots
\]

is exact at \(T_i^* \) for all \(i \geq -n \), where \(T_i^* = \text{Hom}_A(P_{-i}, \text{Hom}_R(A,F)) \). Moreover, there are isomorphisms

\[
\text{Hom}_R(P,F) \cong \text{Hom}_R(A \otimes_A P,F) \cong \text{Hom}_A(P, \text{Hom}_R(A,F)).
\]

This implies that the complex \(\text{Hom}_R(P,F) \) is exact at \(H_i^* \) for all \(i \geq -n \), where \(H_i^* = \text{Hom}_R(P_{-i},F) \), and hence the underlying \(R \)-module \(M \) is \(n \)-Gorenstein projective.

Proposition 2.8 Let \(R \subseteq A \) be a Frobenius extension of rings and \(M \) a left \(A \)-module. Then \(A \otimes_R M(\text{Hom}_R(A,M)) \) is an \(n \)-Gorenstein projective left \(A \)-module if and only if the underlying left \(R \)-module \(R,M \) is also \(n \)-Gorenstein projective.

Proof \(\Rightarrow \). Let \(M \) be an \(n \)-Gorenstein projective left \(R \)-module. There exists an acyclic complex of projective left \(R \)-module \(P = \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow P_{-1} \rightarrow P_{-2} \rightarrow \cdots \) such that \(M \cong \text{Im}(P_0 \rightarrow P_{-1}) \) and for any projective left \(R \)-module \(Q \) the complex \(\text{Hom}_R(P,Q) = \cdots \rightarrow P_i^* \rightarrow P_0^* \rightarrow P_{-1}^* \rightarrow P_{-2}^* \rightarrow \cdots \) is exact at \(P_i^* \) for all \(i \geq -n \), where \(P_i^* = \text{Hom}_R(P_{-i},Q) \). It is easy to see that \(A \otimes_R P \) is an acyclic complex of projective \(A \)-modules, and

\[
A \otimes_R M \cong \text{Im}(A \otimes_R P_0 \rightarrow A \otimes_R P_{-1}).
\]

Moreover, for any projective left \(A \)-module \(P \), there are isomorphisms

\[
\text{Hom}_A(A \otimes_R P, P) \cong \text{Hom}_R(P,P).
\]

This implies that the complex \(\text{Hom}_A(A \otimes_R P, P) \) is exact at \(U_i^* \) for all \(i \geq -n \), where \(U_i^* = \text{Hom}_A(A \otimes_R P_{-i},P) \).
Moreover, since

\[\text{Hom}_R(A, M) \cong A \otimes_R M. \]

This implies that the module \(\text{Hom}_R(A, M) \) is an \(n \)-Gorenstein projective left \(A \)-module.

\[\Rightarrow \text{ Note that for the ring extension } R \subset A \text{ and any } A\text{-module } M, \text{ the module } M \text{ is a left } R\text{-module. By Proposition 2.7, it suffices to prove that when the left } A\text{-module } A \otimes_R M \text{ is } n\text{-Gorenstein projective, } A \otimes_R M \text{ is an } n\text{-Gorenstein projective left } R\text{-module. It is easy to see that the module } R M \text{ is a direct summand of the left } R\text{-module } A \otimes_R M. \text{ According to Lemma 2.3, } R M \text{ is an } n\text{-Gorenstein projective left } R\text{-module.} \]

Theorem 2.9 Suppose \(M \) is any left \(A \)-module. Then \(A \otimes_R M \ (\text{Hom}_R(A, M)) \) is an \(n \)-Gorenstein projective left \(A \)-module if and only if \(M \) is an \(n \)-Gorenstein projective left \(A \)-module.

Proof By Propositions 2.7 and 2.8, it suffices to prove that \(n \)-Gorenstein projective left \(R \)-module \(M \) is also an \(n \)-Gorenstein projective left \(A \)-module.

Let \(Q \) be any projective left \(A \)-module. Then \(Q \) is a projective left \(R \)-module. Note that for the ring extension \(R \subset A \) and any \(A \)-module \(M \), the module \(M \) is a left \(R \)-module. Therefore, by the isomorphisms

\[\text{Hom}_A(M, A \otimes_R Q) \cong \text{Hom}_A(M, \text{Hom}_R(A, Q)) \cong \text{Hom}_R(A \otimes_A M, Q) \cong \text{Hom}_R(M, Q), \]

we get the cohomology isomorphisms

\[\text{Ext}^i_A(M, A \otimes_R Q) \cong \text{Ext}^i_A(M, \text{Hom}_R(A, Q)) \cong \text{Ext}^i_R(A \otimes_A M, Q) \cong \text{Ext}^i_R(M, Q). \]

Since \(M \) is an \(n \)-Gorenstein projective left \(R \)-module, it follows from Lemma 2.2(1) that \(M \in \perp P(R) \), i.e., \(\text{Ext}^i_R(M, Q) = 0 \) for all \(1 \leq i \leq n \). Then we have \(\text{Ext}^i_A(M, A \otimes_R Q) \cong \text{Ext}^i_R(M, Q) = 0 \). Moreover, since \(A Q \) is a direct summand of \(A \otimes_R Q \), and then \(\text{Ext}^i_A(M, Q) = 0). \)

Since \(\text{Hom}_R(A, M) \) is an \(n \)-Gorenstein projective left \(A \)-module, by Lemma 2.2(2), there is an exact sequence \(0 \rightarrow \text{Hom}_R(A, M) \rightarrow L \rightarrow 0 \) of left \(A \)-modules, where \(P_0 \) is projective and \(L \) is \((n + 1)\)-Gorenstein projective. By Lemma 2.2(4), \(L \) is \(n \)-Gorenstein projective. There is a map \(\varphi : M \rightarrow \text{Hom}_R(A, M) \) given by \(\varphi(m)(a) = am \), which is an \(A \)-homomorphism, and split when we restrict it as an \(R \)-homomorphism. Hence we have an \(R \)-homomorphism \(\varphi' : \text{Hom}_R(A, M) \rightarrow M \) such that \(\varphi' \varphi = \text{id}_M \). Let \(P \) be any projective \(R \)-module, and \(g : M \rightarrow P \) be any \(R \)-homomorphism. Since \(L \) is also \(n \)-Gorenstein projective as an \(R \)-module, for the \(R \)-homomorphism \(g \varphi' : \text{Hom}_R(A, M) \rightarrow P \), there is an \(R \)-homomorphism \(h : P_0 \rightarrow P \), such that \(g \varphi' = h f \). That is, we have the following commutative diagram:

\[
\begin{array}{ccc}
0 & \rightarrow & \text{Hom}_R(A, M) & \rightarrow & P_0 & \rightarrow & L & \rightarrow & 0 \\
& & ^f \downarrow & & ^g \varphi' \downarrow & & ^h \rightarrow & & \\
& & & & & & \exists P & & \\
0 & \rightarrow & P_0 & \rightarrow & L_0 & \rightarrow & 0 \\
& & ^f \downarrow & & & & ^{\text{Coker}(f \varphi)} & & \\
& & & & & & \end{array}
\]

Now we have an \(A \)-homomorphism \(f \varphi : M \rightarrow P_0 \). Consider the exact sequence \(0 \rightarrow M \rightarrow L \rightarrow 0 \) of \(A \)-modules, where \(P_0 \) is projective, \(L_0 = \text{Coker}(f \varphi) \). Restricting
the sequence, we note that it is $\text{Hom}_R(\cdot, P)$-exact for any projective R-modules P, since for any R-homomorphism $g : M \to P$, there is an R-homomorphism $h : P_0 \to P$, such that $g = (g\phi')\varphi = h(f\varphi)$. Then, it follows from the exact sequence $\text{Hom}_R(P_0, P) \to \text{Hom}_R(M, P) \to \text{Ext}^1_R(L_0, P) \to 0$ that $\text{Ext}^1_R(L_0, P) = 0$. Moreover, M and P_0 are n-Gorenstein projective left R-modules, it follows from Lemma 2.4 that L_0 is an n-Gorenstein projective left R-module.

Let F be any projective left A-module. There is a split epimorphism $\psi : A \otimes_R F \to F$ of A-modules given by $\psi(a \otimes_R x) = ax$ for any $a \in A$ and $x \in F$, and then there exists an A-homomorphism $\psi' : F \to A \otimes_R F$ such that $\psi\psi' = \text{id}_F$. Note that F is also projective as an R-module. Then, it follows from $\text{Ext}^1_A(L_0, A \otimes_R F) \cong \text{Ext}^1_R(L_0, F) = 0$ that the exact sequence $0 \to M \xrightarrow{f\phi} P_0 \to L_0 \to 0$ remains exact after applying $\text{Hom}_A(\cdot, A \otimes_R F)$. For any A-homomorphism $\alpha : M \to F$, we consider the following diagram

$$
\begin{array}{ccc}
0 & \xrightarrow{f\phi} & M \\
\downarrow{\alpha} & & \downarrow{\beta} \\
F & \xrightarrow{\psi'} & A \otimes_R F \\
\end{array}
$$

For $\psi'\alpha : M \to A \otimes_R F$, there exists an A-map $\beta : P_0 \to A \otimes_R F$ such that $\psi'\alpha = \beta(f\varphi)$. And then, we have $\psi\beta : P_0 \to F$, such that $\alpha = (\psi\psi')\alpha = (\psi\beta)(f\varphi)$. This implies that the sequence $0 \to M \xrightarrow{f\phi} P_0 \to L_0 \to 0$ is $\text{Hom}_A(\cdot, F)$-exact.

Note that L_0 is an n-Gorenstein projective left R-module, and then $\text{Hom}_R(A, L_0)$ is an n-Gorenstein projective left A-module. Repeating the process we followed with M, we inductively construct an exact sequence $0 \to M \to P_0 \to P_1 \to P_2 \to \cdots$ of A-modules, with each P_i projective and which is also exact after applying $\text{Hom}_A(\cdot, F)$ for any projective left A-module F. It follows from Lemma 2.2(1) that M is an n-Gorenstein projective left A-module. □

3. n-Gorenstein projective dimensions over Frobenius extensions

In [10], Ren studied the Gorenstein projective dimensions along Frobenius extensions of rings. In this section, we consider similar conclusions for n-Gorenstein projective dimensions.

Definition 3.1 Let R be a ring. The n-Gorenstein projective dimension of a left R-module M, denote by $n\text{-Gpd}_R M$, is defined as $\inf\{m | \text{there exists an exact sequence } 0 \to G_m \to \cdots \to G_1 \to G_0 \to M \to 0 \text{ of } R\text{-modules, where } G_i \text{ is an } n\text{-Gorenstein projective left } R\text{-module} \}$. If such m does not exist, then $n\text{-Gpd}_R M = \infty$. Obviously, M is an n-Gorenstein projective left R-module if and only if $n\text{-Gpd}_R M = 0$.

Lemma 3.2 ([4, Proposition 3.1]) Let M be an R-module with finite n-Gorenstein projective dimension m. Then there exists an exact sequence $0 \to K \to G \to M \to 0$, where G is n-Gorenstein projective and $\text{pd}_R K = m - 1$.

Proposition 3.3 Let $0 \to K \to G \to M \to 0$ be an exact sequence of left R-module, where G is n-Gorenstein projective. If $1 \leq n\text{-Gpd}_R M < \infty$, then $n\text{-Gpd}_R K = n\text{-Gpd}_R M - 1$.

Proof Let $1 \leq n\text{-}\text{Gpd}_R M < \infty$. On the one hand, by Lemma 3.2 and inclusion relation $P(R) \subseteq n\text{-}GP(R)$, we have an inequality $n\text{-}\text{Gpd}_R K \leq \text{pd}_R K = n\text{-}\text{Gpd}_R M - 1$.

On the other hand, let $n\text{-}\text{Gpd}_R K = s < \infty$. Then there exists an exact sequence $0 \rightarrow K_s \rightarrow K_{s-1} \rightarrow \cdots \rightarrow K_1 \rightarrow K_0 \rightarrow K \rightarrow 0$, where $K_j \in n\text{-}GP(R), j = 0, 1, \ldots, s-1, s$. There exists another exact sequence $0 \rightarrow K_s \rightarrow K_{s-1} \rightarrow \cdots \rightarrow K_1 \rightarrow K_0 \rightarrow G \rightarrow M \rightarrow 0$. So, we have an inequality $n\text{-}\text{Gpd}_R M \leq s + 1 = n\text{-}\text{Gpd}_R K + 1$, i.e., $n\text{-}\text{Gpd}_R K \geq n\text{-}\text{Gpd}_R M - 1$. □

Proposition 3.4 Let R be a ring. If $(M_i)_{i \in I}$ is any family of left R-module, then we have an equality,

$$n\text{-}\text{Gpd}_R (\oplus_{i \in I} M_i) = sup\{n\text{-}\text{Gpd}_R M_i | i \in I\}.$$

Proof The inequality ‘\leq’ is clear since $n\text{-}GP(R)$ is closed under direct sums by Lemma 2.3. For the converse inequality ‘\geq’, it suffices to show that if M_1 is any direct summand of an R-module M, then $n\text{-}\text{Gpd}_R M_1 \leq n\text{-}\text{Gpd}_R M$. Naturally we may assume that $n\text{-}\text{Gpd}_R M = m$ is finite, and then proceed by induction on m.

The induction start is clear, because if M is n-Gorenstein projective, then so is M_1, by Lemma 2.3. If $m \geq 1$, we write $M = M_1 \oplus M_2$ for some module M_2. Suppose that when we have equality $n\text{-}\text{Gpd}_R^M = m - 1$, there is an inequality $n\text{-}\text{Gpd}_R^M \geq n\text{-}\text{Gpd}_R M_1$. Naturally we have $n\text{-}\text{Gpd}_R M_1 < \infty$, where $i = 1, 2$. By Lemma 3.2, there are exact sequences $0 \rightarrow K_1 \rightarrow G_1 \rightarrow M_1 \rightarrow 0$ and $0 \rightarrow K_2 \rightarrow G_2 \rightarrow M_2 \rightarrow 0$ of left R-modules, where G_1 and G_2 are n-Gorenstein projective. We get commutative diagram with split-exact rows.

![Diagram 1](image)

In Diagram 1, $G_1 \oplus G_2$ is n-Gorenstein projective. Applying Proposition 3.3 to the middle column in Diagram 1, we get that

$$n\text{-}\text{Gpd}_R^M (K_1 \oplus K_2) = n\text{-}\text{Gpd}_R^M (M_1 \oplus M_2) - 1 = m - 1.$$

Hence the induction hypothesis yields that $n\text{-}\text{Gpd}_R^M K_1 \leq m - 1$, and thus the short exact sequence $0 \rightarrow K_1 \rightarrow G_1 \rightarrow M_1 \rightarrow 0$ shows that $n\text{-}\text{Gpd}_R^M M_1 \leq m$, as desired. □
\textbf{Proposition 3.5} Let \(R \subset A \) be a Frobenius extension of rings. For any left \(R \)-module \(M \), if \(n\text{-Gpd}_RM < \infty \), then
\[n\text{-Gpd}_RM = n\text{-Gpd}_A(A \otimes_R M) = n\text{-Gpd}_R(A \otimes_R M). \]

\textbf{Proof} It follows from Proposition 2.7 that \(n\text{-Gpd}_R(A \otimes_R M) \leq n\text{-Gpd}_A(A \otimes_R M) \). For any \(n\)-Gorenstein projective left \(R \)-module \(M \), it follows from Proposition 2.8 that \(A \otimes_R M \) is an \(n\)-Gorenstein projective left \(A \)-module. Then \(n\text{-Gpd}_A(A \otimes_R M) \leq n\text{-Gpd}_R M \). As \(R \)-modules, \(M \) is a direct summand of \(A \otimes_R M \). It follows immediately from Proposition 3.4 that \(n\text{-Gpd}_RM \leq n\text{-Gpd}_R(A \otimes_R M) \). Hence, we get the desired equality. \(\Box \)

\textbf{Definition 3.6} ([11, Definition 2.8]) A ring extension \(R \subset A \) is separable provided that the multiplication map \(\varphi : A \otimes_R A \to A(a \otimes_R b \mapsto ab) \) is a split epimorphism of \(A \)-bimodules. If \(R \subset A \) is simultaneously a Frobenius and separable extension, then it is called a separable Frobenius extension.

\textbf{Example 3.7} (1) ([11, Example 2.10]) For a finite group \(G \), the integral group ring extension \(\mathbb{Z} \subset \mathbb{Z}G \) is a separable Frobenius extension.

(2) ([9, Example 2.7]) Let \(F \) be a field and set \(A = M_4(F) \). Let \(R \) be the subalgebra of \(A \) with \(F \)-basis consisting of the idempotents and matrix units \(e_1 = e_{11} + e_{44}, e_2 = e_{22} + e_{33}, e_2, e_3, e_4, e_5, e_{45} \). Then \(R \subset A \) is a separable Frobenius extension.

\textbf{Lemma 3.8} ([11, Lemma 2.9]) The following are equivalent:

(1) \(R \subset A \) is a separable extension.

(2) For any \(A \)-bimodule \(M \), \(\theta : A \otimes_R M \to M \) is a split epimorphism of \(A \)-bimodules.

\textbf{Proposition 3.9} Let \(R \subset A \) be a separable Frobenius extension of rings. For any left \(A \)-module \(M \), if \(n\text{-Gpd}_AM < \infty \), then \(n\text{-Gpd}_AM = n\text{-Gpd}_RM \).

\textbf{Proof} By Proposition 2.7, any \(n\)-Gorenstein projective left \(A \)-module is also \(n\)-Gorenstein projective left \(R \)-module. It is easy to see that \(n\text{-Gpd}_RM \leq n\text{-Gpd}_AM < \infty \). For the converse, we can assume that \(n\text{-Gpd}_RM = m < \infty \), then there exists an exact sequence \(0 \to G_m \to G_{m-1} \to \cdots \to G_1 \to G_0 \to M \to 0 \) of \(R \)-modules, where \(G_i \) is \(n\)-Gorenstein projective. By Proposition 2.8, \(A \otimes_R G_i \) is \(n\)-Gorenstein projective left \(A \)-modules, where \(i = 0, 1, \ldots, m - 1, m \).

Then there exists an exact sequence \(0 \to A \otimes_R G_m \to A \otimes_R G_{m-1} \to \cdots \to A \otimes_R G_1 \to A \otimes_R G_0 \to A \otimes_R M \to 0 \) of left \(A \)-modules. Then \(n\text{-Gpd}_A(A \otimes_R M) \leq m \). By Lemma 3.8, left \(A \)-module \(M \) is direct summand of \(A \otimes_R M \). By Proposition 3.4, we have inequalities \(n\text{-Gpd}_AM \leq n\text{-Gpd}_A(A \otimes_R M) \leq m \). \(\Box \)

\textbf{Acknowledgements} The authors would like to express sincere thanks to the referees for their helpful corrections, suggestions and comments, which have greatly improved the paper.

\textbf{References}

