JOURNAL OF MATHEMATICAL RESEARCH & EXPOSITION

An Extension of the Parallelogram Characterization of Inner Product Spaces*

Zeng Wei-ling(曾伟玲)

(Xiamen University)

We give in the following a characterization of inner product spaces, of which the well-known parallelogram law and its integral analogue given recently by A. T. Penico and C. V. Stanojevic [1] are special cases.

Theorem: A normed complex linear space N is an inner product space if and only if there exists a measure space (X, B, u) and a pair of orthonormal vectors f and g of $\mathcal{L}^2(X, B, u)$ with

$$u\{t | fg \neq 0\} > 0$$
.

such that

$$\int ||xf + yg||^2 du \le ||x||^2 + ||y||^2 \qquad \text{for all } x, y \in \mathbb{N}.$$

Proof: If N is an inner product space, then for any measure space (X, B, u), for instance the real interval (0, 1) with its Lebesgue measure say, and a pair of orthonormal vectors f and g of $\mathcal{L}^2(X, B, u)$ with

$$u\{t | fg \neq 0\} > 0$$
,

we have

$$\int ||xy + yg||^2 du = \int (xf + yg, xf + yg) du$$

$$= ||x||^2 \int |f|^2 du + ||y||^2 \int |g|^2 du + 2(x, y) Re \int f \bar{g} du$$

$$= ||x||^2 + ||y||^2$$

for all x, $y \in N$. Hence the "only if" part is proved.

Presented by M. Y. Zhang (张鸣镛).

^{*}Received Jen. 16, 1982.

Now suppose that N satisfies the given condition. It is sufficient to restrict to the case where N is a 2-dimensional normed real linear space N_2 . Let S be the unit sphere of N_2 . By Loewner Lemma [2] S can be encompassed by a unique minimal ellipse E which meets S in at least four distinct points x_0 , $-x_0$, y_0 , $-y_0$, with x_0 and y_0 being linearly independent. This ellipse induces in N_2 an euclidean norm $\|\cdot\|_E$, with E as an unit sphere. Hence $\|z\|_E \le \|z\|$ for all $z \in N_2$. Let a and b be two arbitrary real numbers. Then $\|ax_0\| = \|ax_0\|_E$, $\|by_0\| = by_0\|_E$, and

$$||ax_0||^2 + ||by_0||^2 \ge \int ||ax_0f + by_0g||^2 du \ge \int ||ax_0f + by_0g||_E^2 du$$

$$= ||ax_0||_E^2 + ||by_0||_E^2 = ||ax_0||^2 + ||by_0||^2.$$

Hence

$$\int ||ax_0 f + by_0 g||^2 du = \int ||ax_0 f + by_0 g||_E^2 du.$$

It follows that

(1)
$$||ax_0f(t) + by_0g(t)|| = ||ax_0f(t) + by_0g(t)||_E$$

almost everywhere in u since

$$||ax_0f + by_0g||^2 - ||ax_0f + by_0g||_E^2 \ge 0.$$

That is, if we denote

$$A_{ab} = \{t \in X | \|ax_0 f(t) + by_0 g(t)\| \neq \|ax_0 f(t) + by_0 g(t)\|_E \}.$$

then

$$u\{\Lambda_{ab}\}=0$$
.

Let a and b range over all rational numbers and the union of all the corresponding sets Λ_{ab} be denoted by Λ , then

$$u\{\Lambda\} = 0$$
.

By the denseness of the rational numbers on the real line and the continuity of norms, we assert that (1) holds for any two real numbers a and b and for all $t \in \Lambda$.

Since $f(t) \cdot g(t)$ does not vanish almost everywhere in u, there exists $t_0 \in \Lambda$ such that $f(t_0) \neq 0$ and $g(t_0) \neq 0$. Consequently for any real numbers a and b, we have

$$||ax_0 f(t_0) + by_0 g(t_0)|| = ||ax_0 f(t_0) + by_0 g(t_0)||_{E_\bullet}$$

With $\{x_0 f(t_0), y_0 g(t_0)\}$ as a basis of N_2 , (2) implies

$$||z|| = ||z||_E$$
 for all $z \in N_2$.

This proves the theorem.

It may be of interest to deduce some other characterizations directly from the preceding theorem. Take for example, $X = \{0, 1\}$ and $u = \varepsilon_0 + \varepsilon_1$, where

$$\varepsilon_i(E) = \begin{cases}
0, & i \in E, \\
1, & i \in E, i = 0, 1
\end{cases}$$

and let

$$f(t) = \frac{1}{\sqrt{2}}, \ t \in X,$$

$$g(t) = \begin{cases} \frac{1}{\sqrt{2}}, & t = 0, \\ -\frac{1}{\sqrt{2}}, & t = 1. \end{cases}$$

We obtain the well-known parallelogram characterization,

Corollary 1. A normed complex linear space N is an inner product space if and only if

$$||x+y||^2 + ||x-y||^2 \le 2(||x||^2 + ||y||^2)$$
 for all $x, y \in N$.

Again, take $X = [0, 2\pi]$ and u being the Lebesgue measure. Let

$$f(t) = \frac{\cos t}{\sqrt{\pi}}, \ t \in [0, 2\pi], \quad g(t) = \frac{\sin t}{\sqrt{\pi}}, \ t \in [0, 2\pi].$$

then we obtain the characterization due to Penico-Stanojevic [1].

Corollary 2. A normed complex linear space N is an inner product space if and only if for all vectors x and y in N

(PS)
$$\frac{1}{\pi} \int_0^{2\pi} ||x \cos t + y \sin t||^2 du \leq ||x||^2 + ||y||^2.$$

In fact, the characterization given by Penico and Stanojevic is in a stronger form. They have shown that it is sufficient that (PS) holds for all unit vectors x and y only. This can be observed from the proof given above. For then owing to the continuity of $\cos t$ and $\sin t$ we assert that

$$||x_0 \cos t + y_0 \sin t|| = ||x_0 \cos t + y_0 \sin t||_E$$

for every $t \in [0, 2\pi]$. Since every vector z is of the form $\rho(x_0 \cos t + y_0 \sin t)$, we obtain $||z|| = ||z||_E$ for all $z \in N$ and the conclusion.

References

- 1. Penico, A. T. and Stanojevic, C. V., An integral analogue to parallelogram law, Proc. Amer. Math. Soc. 79(1980), 427-430.
- 2. Day, M. M., Some characterizations of inner-product spaces, Trans. Amer. Math. Soc. 62 (1947), 320-337.