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§4, Drift

The methods above can be used to obtain analogous results for a Browniam
motion with a constant drift, namely for the process:
D) X@® =X +ct
where X(t) is the standard Brownian motion and ¢ is a nonzero constant, We may
suppose ¢>0 for definiteness.

The strong law of large numbers implies that almost surely
(2) lim¥ (1) = + o0,

The argument in §1 is still valid to show that exit from any given interval (a,b)
is almost sure, but the analogue to Proposition 1 must be false. The reader should
find out for himself that the martingales in (3) and (10) of §2, translated im
terms of X, are not sufficient to determine
(3) p.(X)=P{X (@) =a}, p,(X)=P{X(¥)=0b},
where
F=Fa, s, =1inf{t>0:%(t) ¢ (a,b)},

Fortunately, the martingale in (1) of §3 can be manipulated to do so,

Take a= —2c in (1) of §3. We have

2
(4) exp(- 20X (1) = 2Ly < exp(- 20%(1)).
Write s(x) =e-**, then
(5) {s(X)),F,,P"} is a martingale,

e N N M A N
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It follows that - e
(6) ' S(X) =$(a) B, (X) +5(b)f,(x)

together with = = =

€7) Z.(X)+Py(x) =1,

we obtain

) ~ _ s(b)i—s(x) $(x) —s(a)
(8) PO Tanse 0 PO e

The function s is called the scale function, Compare (8) with (9) of §1. We
cap now use the martingale X (¢)--ct to .fm-d. E'{_r_}. As before, the stopping theo-
rem yields '

=E"{X(¥) —ct}=aP (X) +bp,(x) - cE*{F},

and so

E* (7} = a(s(b>—s(x))+b(s(>~)—s(a)>—x(s(b)—s(a))
tr= s —s@y

More interesting is to use (8) to obtam information for the hitting time
T,= 1nf{t>0 X(t) =y},

If we let b—»co in the first and a-» - oo in the second equat1on in (8) the results

are as follows: _
PYT,<oc}=e 20, a<x<ooy

) P{T, <o} =1, — oo <x<b,

‘The second relation is of course an immediate consequence of (2).

To obtain the distribution of f'y, we return to the martingale in (1) of §3,

translated in terms of X (t);

exp(aX (t) —~ (aé + f—qzi)t) .

Put ,
i=ac+ lL
€10) 2’
= —ekVaEer .

we obtain in the usual manner

1) € = " E*{exp(~ A%)3; X () =a} + e"E*{exp(~ AF); X (F) =b},

Choose the + sign in @ so that e>(0, and let a— —co, Then choose the ~ sign in
a so that a<<(, and let b— + oo, The results may be recorded as follows:

(12) E*{exp( - AT,)} =exp(— V24 +c% [x~y] —c(x-y)),

Using equation (24) of §3 we can cobtain the joint distribution of ¥ (1)
and #. In general the results are complicated but one interesting case emerges
when x=0, b>0 and a= ~b, In this case if we let f,(A) =E*(exp( - A%); X () =b)
and f_(4) = E°(exp( - A%); X (%) = - b), then (24) of §3 becomes
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exp(—+/2A+cib+bc) = f1(A) + f-(A)exp(—v/ZA+c¥ (2b) + 2bc),
exp(~ 2 A+c2 b—bc)=f_(A)+ f,.(A)exXDP(— 24 +ct (2b) - 2tc),
Dividing each equation by its left hand side and subtracting, we obtain
(13) F+(1) (exp(v/23+ct b—bc) - exp(—v'21+c2 b-bc))
C=fo(A)(exp(v/2a~c2 b+bc) —exp(—\'21+c b+be)),

and consequently

(14) fo(a) =€ f- (D).
Since we have also from (8) -
(15) P (X (%) =b) =e®* P (X (%) = -b),

it follows that

E°(exp(—A%)| X (%) =b) = E°(exp(A¥) | X (%) = - b),
That is, the exit time 7 and the exit place ¥ (%) are independent, This curious
fact was first observed by FrAederick Stein.* Is there an intuitive explanation?

Exercise 12. Almost every sample function ¥ (e,®) has a minimum value
m(w)> ~co, Use the strong Markov property to show that m has an exponential
distribution, and then find this distribution,

Exercise 13. Show that almost every path of ¥ reaches its minimum value
m(®) Only'once. '

Exercise 14. This exercise, which is based on a result of J. W, Pitman and
J. C. Rogers, shows that sometimes processes which are “obviously” not Markovian
actually are, Let X* and X- be independent Brownian motions with drifts +c and
— ¢ respectively and let £ be an independent random Wvariable which = +1 with
probability p and = — 1 with probability 1| - p. Construct a process Y by letting
Y,=X, on {£=1) and Y,=X; on {£= -1}. The claim is that Y is a Markov
process with respect to g,, the o-field generated by Y,, s<t.

At first glance this seems false because watching Y, gives“ us information
about & which can be used to predict the future development of the process. This
is true but a little more thought shows ‘ '

PO(E=1lg) =€ /(e  +em "),
Verify this by (9) and show that y, is Markovian. [I owe this exercise to R,
Durrett.] ‘

§5. Dirichlet and Poisson Probiems

In classical potential theory (see Kellogg [ 1 ]) there are a clutch of famous pro-
blems which had their origins in electromagnetism., We begin by stating two of
these problemé in Euclidean space RY where d is the dimension, Let D be a
nonempty bounded open sei (called a “domain” when it is connected), and let gD

B e S NS

* “An independence in Brownian motion with constant drift”, Ann. of Prob, § (1977), 6571-572.
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«denote its boundary: 4D =D (D°) where the upper bar denotes closure, Let A
«denote the Laplacian, namely the differential operator
d (9 2

1) A= r—z!(*é;l—) .
A function defined in D is called harmonic there iff Af=0 in D. This of course
requires that f is twice differentiable, If f is locally integrable in D, namely has
a finite Lebesgue integra]l over any compact subset of D, then it is harmonic in D if
and only if the following “surface averaging property” is true, Let B(x,8) denote
the closed ball with center x and radius 8. For each xcD and 4>0 such that
B(x,6)CD, we have
€2 9 = 5 a8G,09) |, 19969
where o{dy) is the area measure on §B(x,8). This alternative characterization of
harmonic function is known as Gauss’s theorem and plays a basic role in proba-
dbilistic potential theory, because probability reasoning integrates better than
gdifferentiates,

Dirichlet’s problem(or first boundary value problem). Given D and a continuous
Function f on 4D, to find a function @ which is continuous in D and satisfies:

AP =0 in D,
p=f on ¢D.
Poisson's problem. Given D and a continuous function f in D, to find a

€3)

Function ¢ which is continuous in D and satisfies
AP =f in D,
=0 on D.
‘We have stated these problems in the original forms, of which there are

(4)

well-known generalizations. As stated, a unique solution to either problem existis
provided that the boundary §D is not too irregular, Since we shall treat only the
one-dimensional case we need not be concerned with the general difficulties.

In R!, a domain js just an bounded open nonempty interval J=(a,b), Its
ipoundary gl consists of the two points {a,b}. Since Af={", a harmonic function
is just a linear function, The boundary function f reduces to two arbitrary values
assigned to the points a and b, and no question of its continuity arises, Thus in
R! Dirichlet’'s problem reads as follows.

Problem 1. Given iwo arbitrary numbers f(a) and f(b), to find a function
@ which is linear in (a,b) and continuous in {a,b], such that @(a) = f(a),
o) =f(b).

This is a (junior) high school problem of analytic geometry. The solution
is given by
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b— _
(5) P f@) + S,

Now we will write down the probabilistic solution, as follows
(6) P(x) =E*{f(x(7))}, X (a,b)
where =1, ,,. If we evaluate the right member of (6) by (2.9), we see at once
that it is the same as given in (5)., But we will prove that ¢ is the sought
solution by the general method developed in §3, because the same pattern of proof

works in any dimension, Using the r(h) of (3.12), we obtain
(7) @(x) = EH{EX [ f(X (1)1} =-21—{<p<x—h) +P(x+R)}

for any h for which (3.11) is true, This is the one-dimensional case of Gauss’s
criterion for harmonicity. Since @ is bounded it follows from the criterion that @
is harmonic, namely linear, But we can also involve Schwarz’s Theorem in §3 to
deduce this result, indeed the generalized second derivative of @ is identically zero
by (7).

It remains to show that as x-»a or b from inside (a,b), ®(x) tends to f(a)

or f(b) respectively, This is a consequence of the probabilistic relations below:

(8) 1imP‘{1=Tl}=1, 1imP'{1’=T.}=1
x=d

which are immediate by (2.9). But since no such analogue is available in dimen-
sion>1, another proof more in the general spirit is indicated in Exercise 15
below, Assuming (8), we have
P(xX) = E{f(X(T));T=T,} +E*{f(X(T)); T=T,}
=P{r=T,}f(a) + P*{T=T,} f(b),
and consequently
Lim@(x) = 1+f(a) +0+f(b) = f(a); Hm@(x) =0+f(a) +1f(b) = f(b).

Thus the extension of ¢ to [a,b] agrees with f at a and b, [Since @ is linear in
(a,b), it has a trivial continuous extension to [a,b]. This no longer trivial in
dimension>1,]

Exercise 15. Show that for any >0,

(9) LimpP*{T,<¢} = 1.
x>0
This is equivalent to lim P°{T_,<¢} =1, and is a case of Exercise §. Now derive
=0

(8) from (9).
Problem 2. Given a bounded continuous function f in (a,b), to find a
function @ which is continuous in [a,b] such that
1
=P (x) = - f(X) for x¢c (a,b)
(10) 2 ’ e ( Y73
?(a) =@) =0,
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The constants ZL and -1 in the differential equation are chosen for the sake

of convenience, as will become appatent below. This is a simple calculus problem
which can be solved by setting

P(x) =fx2(y'- x)fey)dy+ex+d

, -
and determining the constants d= -ca and c:(b—a)"j (b-y) f(y)dy by the

boundary conditions ¢(a) = 0 and ®(b) = 0. Substituting these values for ¢ and d and
rearranging we can write the solution above as

b
where
‘{ 2<*—:>_<ab‘y) , if a<x<y<by
(12) B(X,y) =\
7\ Z(U—JCE((J‘Y“’) , if a<y<x<b,

Note that g(x,y)>0 in (a,b) and g(x,y)=g(y,x). We put g(x,y)=0 outside
(a,b) X (a,b), The function g is known as the Green’s function for (a,b) because
representing the solution of (10) in the form (11) is an example of the classical
method of solving differential é'quations by Green’s functions (see Courant and
Hilbert [2; Ch, V. 147 and Exercises 17 énd‘18 below). v
Now we will write down the probabilistic solution of Problem II, as follows:

(13) P(x) =E’{f;f(x(t))dt},

Note that the integral above may be regarded as over (“0,1.') so that f need be
defined in (a,b) only, Without loss of generality we may suppose f=0; for the
general case will follow from this case and f=f*=f-. To show that ¢ satisfies

the differential equation, we proceed by the method of §3. We have

(10 oeo = {(["7+]" Yrxana)
=e{[ roxana e [[Traanad).
Let us put
(15) vesm =4[ fxanas
-then
(16) D) =YX 1) +F{P(x+h) +P(x=R)}.

Sinc f=0,¥>0; also o(x)<|[f|| E*{t}<]|fll (b—a)?/4. Thus @ is continuous and
concave, Now write (16) as
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an P(X+h) —29(%) +P(x—-h) _ _ 2%(x,h) ..
h2 h2 ‘

To calculate the limit of the right member of (17) as h—»(Q, we n&:e by (‘2.12),
(18) E*{t(h)}=h?, '
Next we have

T(h .
a9 pe,m - B} = 5[ TR0 - fxcon da .

Since f is continuous at X, given >0 there exists h,(e) such that if .|y - x| <h,
(&) then |f(y)—f(x)| <e. Hence if 0<<h<<h,, we have |f(X(?)) - f(X(0))|<e for
0<<t<<{t(h) and so the absolute value of the right member of (19) is bounded by
E*{et(h)} =¢eh?, It follows that the left member of (19) divided by h? converges

to zero as h—0, and consequently by (18)

(20) lim PEP = pxy,

h-0

Since ¢ is continuous by conzavity from (16), and f is continuous by hypothesis,

an application of Schwarz’s Theorem yields the desired result

Pr(x) = —-2f(%),
Furthermore since
le() | <I[fIE*{7},
@(x) converges to zero as x-»d or x—»b by (2..12). On the other hand @(a) = @(b)
=0 by (2.13). Thus @ is continuous in [a,b] and vanishes at the endpoints,
If we equate the two solutions of Problem II given in (12) and (13), we

obtain
ey e[ roxanad = [ g, m sy

for every bounded continuous f on (a,b). Let us put for xc R! and Bc !,

2 V(x,B) =E’{LIB(X(t))dt}.

Then it follows from (21) and F. Riesz’s theorem on the representation of linear
functionals on (a,b) as measures (see, e, g., Royden [3, p.310]) that we have

(23) V(x,B) =Lg(x,y)dy.

In other words, V(x,») has g(x,e) as its Radon-Nikodym derivative with respect
to the Lebesgue measure on (a,b)., The kernel V is sometimes called the potential
of the Brownian motion killed at 7. It is an important object for the study of this
process since V(x,B) gives the expected occupation time of B starting from x,
Exercise 16. Show by using elementary calculus that the solutions to Pro-

blems I and II in R! are unique.
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Example 17. Define a function g(x,y) in {a,b] as follows, For each x

let g,.()=8(X,°).

(i) g, is a continuous function with g (a) =g_(b) =0;

(ii) for all x=#y,g%(¥) =0;

(iii) lim(gl(x+e) -gl(x-¢&)) = -1,
Show that ‘t.hoe function g(x,y) defined by (12) is the only function with these
properties,

Example 18, Let the function 8, have the defining property that for any

function f on (a,b) we have
b
(23) j 6, () f(wydu = (),

This g, is called the Dirac delta function [never mind its existence;]. It
follows that

(24) J 6,(u)du =1, ,(¥),
We can now solve the differential equation
h” = - 26,, h(a) =h) =0,

by another integration of (24). Carry this out to obtain h(x) =g(x,y), which is
what results if we let f= -26, in (21).
Exercise 19, Determine the measure H(X,+) on 31 so that the solution to

Problem 1 may be written as

[ F()H(x, dy).
a1

The analogue in R¢ is called the harmonic measure for I. It is known in the
classical theory that this measure may be obtained by taking the “interior normal

derivative” of g(x,¥) with respect to y. Find out what this means in R!.

Exercise 20. Give meaning to the inverse relations:
A_ay= A
S -e=1 (-5 =1

where I is the identity, and G is the operator defined by Gf(x) =rg(x,y)_f(y)dy.
‘ Exercise 21, Solve the following problem which is a combination of problems t
and 2, Given f, on JI and continuous f, in I, find @ such that @ is continuous in

i and satisfies

%w’l: —.fl in I’
(pzfz on aIn
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§6. Feynman-Kac Functional

As a final application of the general method, we will treat a fairly new pro-

blem, Reversing the previous order of discussion, let us consider
(1) (%) =E‘{cij;q(X(t))dt°f(X(T)) }o xerap]

where g is a bounded continuous function in {a,h], f as in Problem 1 above, Note

that by Exercise 3:

(2) P(a) =f(a), Pb)=f(b),

The exponential factor in (1) is called the Feynman-Kac functional; see [Kac].
An immediate question is whether ¢ is finite, If g=a constant ¢, and f=l,

then @=oo for sufficiently large ¢, by Exercise 1I,

Let us write e(u) =j'q(X(t))dt for u=0,
0

Proposition 1. Suppose f=0 in (1), If ¢co in (a,b), then @ is contin-
uous in [a,b].

Proof. Let ¢(x,)<{co, and x2x,, x<C(a,b). Then we have by the strong
Markov property .

O >P(%¢) ZE*{€(7); T, <7} = E*{e(T,); T, <1}9(x),
Since P*{T,<t}>0 and e(T,) >0, this implies @(x) <o,

Next, given any A>-(, there exists ¢>>0 such that we have
(3) E¥{et?} <o,

This follows from the derivation of (1.6). Consequently we have by dominated
convergence
(4) 1).1—1.13131{641(1-)}:1.

We now state a lemma,

Lemma. Let ¢ be a finite nonnegative function on [a,b] having the follow-
ing approximate convexity property. For each [%,%,]C[a,b], 0<%, —x,<6(e) and
x= A%, + (1 - A)x,,0<<A<1, then
(5) A= {AP(x) + (L= A P(%,) }<P(x) <1+ &) {Ap (X)) + (1 - ADP(x,) }.
Such a @ is continuous in [a,b].

Proof of the lemma. Let k<6(1) and 4,=1,= -, then we have by (5)

(6) PX)<{P(x+h)+@(x-h)},

For a suitable h we can divide [a,b] into a finite number of subintervals of

length 2h each, If we apply (5) to each subinterval we see that @ is bounded,
Now fix x in (a,b) and shrink [x;,x,] to x in such a way that i,-»1 and

<P(x1)—>'1_ffmx ®(y) or (p("’)”,ffr-,", ®(y), we obtain from (5):
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(1-& Tmem<ex)<(1+e) limo),

Tt x F1tx
Similarly for y||x. Since ¢ is arbitrary this shows that @ is continuous at x. A
similar argument shows that @ is unilaterally continuous at ¢ and at b, Lemma is
proved,
‘We return to @ and generalize the basic argument in §3 by considering the
Tirst exit time from an asymmetric interval (x—h,x+h/)(a,b), starting from x.
Recall that

’

. h
) PTG <Taw}= 37
For sufficiently small h and h/ we have by (4):

(8) 1-e<E*{e°%"}, Eet™*}<l+e
where Q =||g|| and t™*=7.,_, ..;,. The strong Markov property yields, for the ¢
in (1) with an arbitrary f:

€9) <P(x)=E”{€(T*)}{7L:h*h7 P(x—h) + Wn,—tp(x+h")},

Using (8) and (9) we see that if f>0 in (1) then @ satisfies the conditions of
the Lemma, and is therefore continuous in [a,b]. In particular this is true when
f=1(, Or 1y,. Hence it is also true for the @ in (1) for an arbitrary finite f.
Proposition 1 is proved.

Let us write ¢, and @, for the ¢ in (1) when f=1,, and f=1,,, respectively,
According to Proposition 1, either ¢, =co or @, is bounded continudus in [a,b],
:and similarly for @,. However, it seems possible that ¢ ,=co but @¢,3c0 in [q,b],
or vice versa. For a general f, we have
€10) (%) = f(a)P, (%) + f(D)P, (%),
provided the right member above is not +oco~oo 0r — 20+ o0, This is certainly
the case under the hypothesis of the next propoisition,

Proposition 2. Suppose that ¢ %00 and @,% o0 in (a,b)e Then for any f=0
we have

1 gr =
Z(P +qP=0

in (a,b), and @ is centinudus in [a,b].
Proof, Write
{11) E*{e(t(h))} =1+9¥(x,h);

then equation (9) for h=h’ takes the form:

P(x+h) - 20(x) +@(x—h)
hz

{12) = ﬂg;ﬁ{q)(x+h)+m(x—h)}.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



No, 3 K.L,Chung. BROWNIAN MOTION ON THE LINE (ID 97

Since we have proved that ¢ is continuous, the quantity in (12) will converge to
- lim [¢$(x,h)/h*] 2¢(x) as b—(, provided that the latter limit exists. T> show
h=6

this we need

(13) E*{t(h)?} = g—w;

also that for sufficiently small h we have by (4):

a4 Er{e*tor iR,
Exercise 22. Prove (13). Can you get a general formula for E*{t(h)*}, k=17
Using the trivial inequality  u <<¢* for all 0<Ku<co, we have

T(h)ie()‘(‘)gt(h)i/l 6(01'1)'(”.

Hence by Holder’'s inequality (13) and (14),

(15) E*{t(h)*e? M} E*{T(h)*} M/ E*{e4 @ W <o b,

where ¢, is a constant, Next we use the inequality

u? et
— €

|6'—1—u[< 2 ’

valid fer all u, to cbtain

s(k)
E*{le(z(h)) -1 —L g(x@))dt|}

t{k)
<lei Maxenante < O prmy e,
]

The last term divided by h? converges to zero as h—(, by (15). Hence by (20)
of §5 with § replaced by ¢:

t{
1im_¥{%, 1) =1im—th-E‘U “q(X(t))dt}=q(x).
0

i-c  h? i=0

Therefore Schwarz’s theorem applied to (12) yields @” = — 2¢g as asserted. Note that
the continuity of @ is required here also, Proposition 3 is proved,

Propositions 1 and 2 together give a dichotomic criterion for the solvability
of the following problem,

Problem 3. Given a bounded coentinucus function ¢ in (a,b) and two

arbitrary numbers f(a) and f(b), to find a function ® which is continuous in
[a,b] such that

(16) %qﬂf(x) +q()Px) =0,  XE(a,b);

?(a) = f(a), o(b) = f(b),
Exercise 23. Is the solution to Problem III unique when it exists?
Exercise 24. Solve the problem similar to Problem 3 but with the right
side of the differential equation in (16) replaced by a given bounded continuous
function in (a,b). This is the Poisson problem with the Feynman-Kac functional.
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Exercise 25, Prove that if the equation in (16) has a positive solution @
in (a,b), then for any [c,d]c(a,b), we have

P(x) = E*{e(T., ;) P(X(T(., s))}s x€[c,d],
In particular,
x—>E*{e(T, 4)}
is bounded in [c,d].

Exercise 25. Prove that if the differential equation in (16) has a positive
solution in each interval (c¢,d) such that [c¢,d]c (a,b) (without any cendition on
the boundary {c,d}) then it has a positive solution in (a@,b). These solutions are
a prior unrelated to cne another.

Exercise 27. Is it pessible that ¢,=co in (a,b) whereas Q.00 in (a,b)?
Here @, and ¢, are defined before Proposition 3, This is a very interesting
problem solved by M, Hogans a graduate student at Stanford.
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