On the Diophantine Equation $x^4 - Dy^2 = 1^*$

C. D. Kang (康继鼎) D. Q. Wan (万大庆) G. F. Chou (周国富)

(Chengdu Cillege of Geology)

The research of the Diophantine equation

$$x^4 - Dy^2 = 1 {1}$$

was started by Ljunggren in 1942, where D>0 and is not a square integer.

Since then thanks to the work of Ljunggren, Cohn, Bumby, and Ko Chao(柯召). Sun Chi (孙琦), many advances of the research have been made. One can refer to [1] and its references.

In this paper, the main theorems in [1] are improved by us, that is, we have the following

Theorem A Let $D = P_1 \cdots P_i \equiv 7 \pmod{8}$, $P_1 \equiv 1 \pmod{4}$, $P_i \equiv 3 \pmod{4}$ ($2 \le i \le s$), where P_1, \dots, P_s are distinct odd primes. Then, when

- (i) $2P_1 = a^2 + b^2$, $a \equiv \pm 3 \pmod{8}$, $b \equiv \pm 3 \pmod{8}$, or
- (ii) $\left(\frac{P_i}{P_1}\right) = -1$ for some $j(2 \le j \le s)$,

Eq. (1) has no positive integer solutions.

Theorem B Let $D = 2P_1 \cdots P_s$, $P_1 \equiv 1 \pmod{4}$, $P_i \equiv 3 \pmod{4}$ $(2 \le i \le s)$, where P_1, \dots, P_s are distinct odd primes. Then, when

- (i) $2P_1 = a^2 + b^2$, $a \equiv \pm 3 \pmod{8}$, $b \equiv \pm 3 \pmod{8}$, or
- (ii) $\left(\frac{P_i}{P_1}\right) = -1$ for some $j(2 \le j \le s)$, or
- (iii) $P_1 \equiv 5 \pmod{8}$

Eq. (1) has no positive integer solutions except the solutions x = 47321, y = 5219916 ($D = 2 \cdot 5 \cdot 7 \cdot 11 \cdot 239$) and x = 41, y = 116 ($D = 2 \cdot 3 \cdot 5 \cdot 7$).

To prove the theorems, we need the following Lemma which can be derived by induction on the size of h and using some well-known results in the theory of Diophantine equations.

^{*} Received Sept. 15, 1981.

Lemma Let $h = h_1 h_2$, greater than one, be a positive integer and both its two prime factors be of the form 4k+3. Then the equation

$$h_1^2 x^4 - 8h_2^2 y^4 = 1 {(2)}$$

has no positive integer solutions except the solutions x = y = 1, $h = h_1 = 3$, $h_2 = 1$; and the equation

$$x^2 - 8h^2y^4 = 1, \quad h \neq 239$$
 (3)

has no positive integer solutions.

Now we begin to prove our theorems by providing the outlines.

Proof of theorem A As [1], from (1) we can obtain

$$x^{2} + 1 = 2u^{2}, x^{2} - 1 = 2D(2v)^{2}, y = 4uv, (u, v) = 1.$$
 (4)

Further we have

$$u+1=2lt^2$$
, $u-1=2ks^2$, $D=lk$, $v=st$, $(l, k)=(s, t)=1$. (5)

When P_1 is a factor of k, we can give a contradiction by using the methods in [1], when P_1 is not a factor of k, from (4), (5), we have

$$e_1^2 m_1^4 + 1 = 2(l_1 m_1^2 - f_1 n_1^2)^2$$
, $k = e_1 f_1$, $s = m_1 n_1$, $(e_1, f_1) = (m_1, n_1) = 1$. (6)

By the theory of Pell equations, from (6), we have

$$f_1 n_1^2 = e_1 m_1^2 - (e_1 m_1^2 - f_1 n_1^2) = 2 \cdot \frac{\varepsilon^b + \overline{\varepsilon}^b}{\varepsilon + \overline{\varepsilon}} \cdot \frac{\varepsilon^b - \overline{\varepsilon}^b}{\varepsilon - \overline{\varepsilon}}, \tag{7}$$

where b is a positive integer, $\varepsilon = 1 + \sqrt{2}$.

We may change (7) into the form of Eq; (2) and so far the proof is clearly completed.

The proof of theorem B is similar to that of theorem A and is omitted;

Reference

[1] Ko Chao and Sun Chi, On the Diophantine equation $x^4 - Dy^2 = 1$, Chinese Annals of Mathematics, 1 (1980). 83—89.