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On the Maximality of Certain Orthogonal Groups

Embedded in Symplectic and Unitary Groups resp, *

Li Shang-zhi (&%)

(China University of Science and Technology)

It is of interest to study the maximality of a classical group embedded in
another, We bave proved in [1] the maximality of special generalized symplectic
(unitary, orthogonal resp.) groups in corresponding special linear groups, And this
paper is a sketch of a section of [ 1] devoted to another two cases,

I. The maximality of 0(2m,2*,Q) in SP(2m,2*)

Here the symplectic inner product (x,y) =Q(x+%) +Q(x) +Q(y) in the under-
lying space V.

Theorem 1 G,=0(2m,2%,Q) is maximal in G=SP(2m,2*%).

Proof Each symplectic transvection in G can be written in the form ¢ :z—2 +
(z,v)v, z€V, with the uniquely determined vector ». t,€G, iff Q(v) =1, and any
subgroup XzG, of G contains] some t,, with Q(v,) =ss1. write v,=se+f with
Q(e)=0(f) =0, (e,f) =1 and take x, =ce+x,, cEFyu, X, €{e,f>* and Q(x,) =1, then
X contains t;}tsto, =t,, Where x=xt, =x, + (x,,v,)v,, Q(X)=1+4+c*(s+1) runs
over F,. as c does, which implies that X contains all symplectic transvections and
hence i3 equal to G.

II. The maximality of an orthogonal group

contained in PSU(n,q?) (g odd, n=3)
In [2], we proved the maximality of the nomalizer of PSp(2m,q) = PSL(2m,q)

nesum, ¢t,(_ ") in psum,e,(_ ).
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g
(Im ), when n=2m

L
et H= I,

I, s, When n=2m+1,
1
we have now PSL(n,q) NPSU(n,q*,H) =PSO(n,q,H) and

Theorem 2 Let G=PSU(n,q*,H) (n>3), G+PSU(3,9), PSU(3,25), PSU(4,
9), then the normalizer G, =GNPGO(n, q, H) of G,=PSO(n, q, H) in G is ma-
ximal in G.

Consider the subset V,={(a,,-, a,) |a,EF,, (1<i<n)} of the underlying
space V={(a,,-,0,)|a,EF,s, (1<i<n)} and the set of lines V = {{x)=FaX
|x€V,}, then G, and G, are the stabilizers of V, and V,, in G resp.. Let
A€EF, A=-A. As in [2], for any isotropic vector u in V, the subgroup T,=
{t., 22 +5A(Z,u)u, ZEV|SCF,} consisting of unitary transvections is called
the T-subgroup corresponding to {(u), And furthermore, when n>4, we can take an
orthogonal pair of non-collinear isotropic vectors u, x in V and define a subgroup

Ty e = {t., sx: 222+ (Z,8X)U— (Z,u)sX, 2EV|SEF,}

called the T*-subgroup corresponding to the F,-plane (u,x),=Fu+F,X. We note
that T, ,,,G, iff u=cu,, x=cx, for some cEF}., U,, X, EV,.

Lemma i) (T, ves Tan stewe? >Tus if CEFp\F,.

i) (T nes Ter e >Tuy if (%, €F,.
Proof i) t;!, ..t ,G+.u) =ties(7-,) fOr any SEF,.
i1) t5} T, oate 3= Taun s+ cve» Where ¢ = (x,9) ¢ F,, and then apply i).

Proof of Theorem 2 Any subgroup XG., of G is to be proved to contain
some hence all T-subgroups T,, ¥ €V, Which will lead to X=G by Lemmas 3 and
4 of [2].

Case I n=>4. Any gE€X\G., sends some isotropic line in G, out. If we can
choose g such that G.,8() G, contains isotropic lines, we can find an orthogonal
pair of isotropic vectors u,, u in V, such that u,g€V., ug¢ V., and can
write u,g=cx,, ug=c(x+Ay) with c€Fq, 0#%,,Xx,YEV,. 0= (X+AY,X,) = (X,
X,) + A(y,x,) implies (x,x,) = (¥,%0) =0, X contains g 'Teowe 8= Texontae, WhHER
{y)y=(x,> we have T,<X by lemma i), Otherwise, there exists an isotropic
Yo E (Xt NV, )\y* kence (x+ Ay,y,) ¢ F, leads to T,<X by lemma ii), Now suppose
G«8 G contains no isotropic line for any g€ X\G.,. X contains the conjugate
Ternewg O T uunglGq WheTe 2, =u,g=%, + AV, 2, =U,8 =X, + AY, 05U %y Y EV gy
i=1,2. {X,,X,,¥,,¥,> cannot be totally isotropic (otherwise, we have isotropic line
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(%) E‘V.q,ﬂvq,t,,,,, but £, ., €EX\G.,), and we may suppose the plane {x,,y,> to be
non-singular, z,=az, +%, with isotropic component z, =%, + Ay, in {x,;,y,>* and %,, %,
€%, ¥>* NV, The plane {%,,5,> should also be non-singular and bas a base {h,,

h,}CV, with h, Lh,, (h;,h)=c,50 (i=1,2). Let S, denote the symmetry z+—z

_ 2@
(x,%)

pic h, +sh, (SEF7) and put g, =8§,S,+.4 When g=3 but n>>4, take an anisotro-

pic A, +h, +hy (hsE<x1,y1’§29§£>lnvq)‘and PUt g, =S, Si+mens then we have
(%3,%,8,) ¢ F, which leads to X>T,,, hence X>T, ,=T,,.
Case II n=3. -S.€G, iff {(x)EV,.,,. X contains some -§, with {(x)=((a,,

a,,d,)>€¢V, When a,a,=0, say x=:(0,—g—-,,1), ¢¢ F,, The commutators of S, ,, ;)

x (2E€V) determined by anisotropic vector x, When ¢>>3, take an anisotro-

Sw.a2.0 8nd Sg.0.0 S, (SEF) which are in X form the T-subgroup T, ., o)

1
In other cases, say a, =1, by acting on (x) by some - S; 1 -8, |
| S 1
LS,
1 (s,,5, €EF,) in G, we may suppose a,¢F,, a, EF,. Replace X
-8, 1

Sa,a,4

2

by a suitable (1, ,0) (-S.) ($€F,), we can always come back to a treated

case,
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