On the Maximality of Certain Orthogonal Groups

Embedded in Symplectic and Unitary Groups resp. *

Li Shang-zhi (李尚志)

(China University of Science and Technology)

It is of interest to study the maximality of a classical group embedded in another. We have proved in [1] the maximality of special generalized symplectic (unitary, orthogonal resp.) groups in corresponding special linear groups. And this paper is a sketch of a section of [1] devoted to another two cases.

I. The maximality of $O(2m, 2^k, Q)$ in $SP(2m, 2^k)$

Here the symplectic inner product (x,y) = Q(x+y) + Q(x) + Q(y) in the underlying space V.

Theorem 1 $G_0 = O(2m, 2^k, Q)$ is maximal in $G = SP(2m, 2^k)$.

Proof Each symplectic transvection in G can be written in the form $t_v:z\longmapsto z+(z,v)v$, $z\in V$, with the uniquely determined vector v. $t_v\in G_0$ iff Q(v)=1, and any subgroup $X\geqq G_0$ of G contains some t_{v_1} with $Q(v_1)=s\ne 1$. write $v_1=se+f$ with Q(e)=Q(f)=0, (e,f)=1 and take $x_1=ce+x_2$, $c\in F_{2k}$, $x_2\in \langle e,f\rangle^{\perp}$ and $Q(x_2)=1$, then X contains $t_{v_1}^{-1}t_{x_1}t_{v_1}=t_x$, where $x=x_1t_{v_1}=x_1+(x_1,v_1)v_1$, $Q(x)=1+c^2(s+1)$ runs over F_{2k} as c does, which implies that X contains all symplectic transvections and hence is equal to G.

II. The maximality of an orthogonal group contained in $PSU(n,q^2)$ $(q \text{ odd}, n \ge 3)$

In [2], we proved the maximality of the nomalizer of PSp(2m,q) = PSL(2m,q) $\bigcap PSU(2m, q^2, \binom{I_m}{-I_m}) \text{ in } PSU(2m, q^2, \binom{I_m}{-I_m}).$

^{*}Received June 4, 1981.

Let

$$H = \begin{pmatrix} I_m \\ I_m \end{pmatrix}, \quad \text{when } n = 2m$$

$$\begin{pmatrix} I_m \\ I_m \\ 1 \end{pmatrix}, \quad \text{when } n = 2m + 1.$$

We have now $PSL(n,q) \cap PSU(n,q^2,H) = PSO(n,q,H)$ and

Theorem 2 Let $G = PSU(n, q^2, H)$ $(n \ge 3)$, $G \ne PSU(3, 9)$, PSU(3, 25), PSU(4, 9), then the normalizer $G_{(q)} = G \cap PGO(n, q, H)$ of $G_q = PSO(n, q, H)$ in G is maximal in G.

Consider the subset $V_q = \{(a_1, \dots, a_n) | a_i \in F_q, (1 \le i \le n)\}$ of the underlying space $V = \{(a_1, \dots, a_n) | a_i \in F_{q^2}, (1 \le i \le n)\}$ and the set of lines $V_{<q} = \{\langle x \rangle = F_{q^2}x \mid x \in V_q\}$, then G_q and $G_{<q}$, are the stabilizers of V_q and $V_{<q}$, in G resp.. Let $\Delta \in F_{q^2}^*$, $\overline{\Delta} = -\Delta$. As in [2], for any isotropic vector u in V, the subgroup $T_u = \{t_{u_1, v_2} : z \mapsto z + s\Delta(z, u)u, z \in V | s \in F_q\}$ consisting of unitary transvections is called the T-subgroup corresponding to $\langle u \rangle$. And furthermore, when $n \ge 4$, we can take an orthogonal pair of non-collinear isotropic vectors u, x in V and define a subgroup

$$T_{sus_{x}} = \{t_{us_{x}}: z \rightarrow z + (z, sx)u - (z, u)sx, z \in V \mid s \in F_q\}$$

called the $T^{(2)}$ -subgroup corresponding to the F_q -plane $\langle u, x \rangle_q = F_q u + F_q x$. We note that $T_{(u,x)q} < G_{(q)}$, iff $u = cu_1$, $x = cx_1$ for some $c \in F_q^*$, u_1 , $x_1 \in V_q$.

Lemma i) $\langle T_{\langle u, x \rangle q}, T_{\langle u, x + cu \rangle q} \rangle > T_u$, if $c \in F_{q^2} \backslash F_q$.

ii) $\langle T_{(u,x)q}, T_{(u,y)q} \rangle > T_u$, if $(x,y) \notin F_q$.

Proof i) $t_u^{-1} \cdot s_x t_{v_0, s}(s_{s_0, s_0}) = t_{v_0, s}(\overline{c}_{s_0, s_0})$ for any $s \in F_q$.

ii) $t_{u,y}^{-1}T_{u_0,x}$, $t_{u,y} = T_{u_0,x+cu}$, where $c = (x,y) \notin F_q$, and then apply i).

Proof of Theorem 2 Any subgroup $X \supseteq G_{qq}$, of G is to be proved to contain some hence all T-subgroups T_u , $u \in V_q$, which will lead to X = G by Lemmas 3 and 4 of [2].

Case I $n \ge 4$. Any $g \in X \setminus G_{eq}$, sends some isotropic line in G_{eq} , out. If we can choose g such that $G_{eq}, g \cap G_{eq}$, contains isotropic lines, we can find an orthogonal pair of isotropic vectors u_0 , u in V_q such that $u_0 g \in V_{eq}$, $u g \notin V_{eq}$, and can write $u_0 g = cx_0$, $u g = c(x + \Delta y)$ with $c \in F_q^{\bullet_1}$, $0 \ne x_0, x, y \in V_q$. $0 = (x + \Delta y, x_0) = (x, x_0) + \Delta(y, x_0)$ implies $(x, x_0) = (y, x_0) = 0$. X contains $g^{-1}T_{\bullet u_0, u \triangleright q}$ $g = T_{\bullet x_0, x + \Delta y \triangleright q}$. When $\langle y \rangle = \langle x_0 \rangle$ we have $T_{x_0} < X$ by lemma i). Otherwise, there exists an isotropic $y_0 \in (x_0^{\perp} \cap V_q) \setminus y_0^{\perp}$ hence $(x + \Delta y, y_0) \notin F_q$ leads to $T_{x_0} < X$ by lemma ii). Now suppose $G_{eq}, g \cap G_{eq}$, contains no isotropic line for any $g \in X \setminus G_{eq}$. X contains the conjugate $T_{ex_1, x_2, q}$ of $T_{ex_2, x_3, q} < G_q$, where $z_1 = u_1 g = x_1 + \Delta y_1$, $z_2 = u_2 g = x_2 + \Delta y_2$ $0 \ne u_1, x_1, y_1 \in V_q$, i = 1, 2. $\langle x_1, x_2, y_1, y_2 \rangle$ cannot be totally isotropic (otherwise, we have isotropic line

 $\langle x_1 \rangle \in V_{qp} \cap V_{qp} t_{z_1,z_2}$ but $t_{z_1,z_2} \in X \setminus G_{qp}$), and we may suppose the plane $\langle x_1, y_1 \rangle$ to be non-singular, $z_2 = az_1 + \tilde{z}_2$ with isotropic component $\tilde{z}_2 = \tilde{x}_2 + \Delta \tilde{y}_2$ in $\langle x_1, y_1 \rangle^{\perp}$ and \tilde{x}_2, \tilde{y}_2 $\in \langle x_1, y_1 \rangle^{\perp} \cap V_q$ The plane $\langle x_2, y_2 \rangle$ should also be non-singular and has a base $\{h_1, h_2, \dots, h_n\}$ h_2 $\subset V_q$ with $h_1 \perp h_2$, $(h_i, h_i) = c_i \neq 0$ (i = 1, 2). Let S_x denote the symmetry $z \mapsto z$ $-\frac{2(z,x)}{(x,x)}x$ ($z \in V$) determined by anisotropic vector x. When q > 3, take an anisotropic $h_1 + sh_2$ ($s \in F_q^*$) and put $g_1 = S_{h_1}S_{h_1+sh_2}$; when q = 3 but n > 4, take an anisotropic $h_1 + h_2 + h_3$ $(h_3 \in \langle x_1, y_1, \tilde{x}_2, \tilde{y}_2 \rangle^{\perp} \cap V_q)$ and put $g_1 = S_{h_1}S_{h_1 + h_2 + h_3}$, then we have $(z_1, z_2, z_3) \notin F_q$ which leads to $X > T_{z_1}$, hence $X > T_{z_3, z_3} = T_{u_1}$.

Case II n=3. $-S_x \in G_q$ iff $\langle x \rangle \in V_{qq}$. X contains some $-S_x$ with $\langle x \rangle = \langle (a_1, a_2) \rangle$ $a_2,a_3\rangle \not\in V_q$. When $a_1a_2=0$, say $x=\left(0,\frac{c}{2},1\right)$, $c\notin F_q$. The commutators of $S_{(0,0,1)}$ $S_{(0,\epsilon/2,1)}$ and $S_{(0,0,1)}$ $S_{(0,\epsilon/2,1)}$ $(s \in F_q)$ which are in X form the T-subgroup $T_{(0,1,0)}$.

In other cases, say
$$a_1 = 1$$
, by acting on $\langle x \rangle$ by some
$$\begin{pmatrix} 1 \\ -\frac{s_1^2}{2} & 1 & -s_1 \\ s_1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -\frac{s_2^2}{2} & s_2 \\ 1 & -s_2 & 1 \end{pmatrix}$$
 $(s_1, s_1 \in F_q)$ in G_q we may suppose $a_3 \notin F_q$, $a_2 \in F_q$. Replace X

by a suitable $\left(1, \frac{sa_3\bar{a}_3}{2}, 0\right)$ $(-S_x)$ $(s \in F_q)$, we can always come back to a treated case.

References

- [1] Li Shangzhi, On the subgroup systems of certain finite simple groups, Ph. D. Thesis, China University of Science and Technology (1981).
- [2] Li Shangzhi & Zha Jianguo, On certain classes of maximal subgroups in $PSU(n,q^2)$. Scientia Sinica, 1982, 2: 125-131.