On the Approximation of Continuous

Function by Harmonic Means*

Chen Quande (陈全德)

(Hangzhou University)

Let f(x) be a continuous and periodic function with period 2π and

$$\mathfrak{S}[f] = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

be its Fourier series. Denote by $s_n(f,x)$ the n-th partial sums of $\mathfrak{S}[f]$ and by $\omega(f,\delta)$ the moduls of continuity of f(x). When $\omega(\delta)$ is a modul of continuity, we denote by $H[\omega]_c$ the class of all functions for which $\omega(f,t) \leq \omega(t)$.

It is well known that the n-th harmonic means and the n-th Cesáro means of $f \in C_{2}$, are defined as

$$N_n(f,x) = \frac{1}{P_n} \sum_{n=0}^{n} \frac{s_{\nu}(f,x)}{n-\nu+1} \qquad \left(P_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}\right)$$

and

$$\sigma_{n}^{a}(f,x) = \frac{1}{A_{n}^{a}} \sum_{n=0}^{n} A_{n-1}^{a-1} S_{n}(f,x) \qquad \left(\alpha > -1, A_{n}^{a} = \frac{(\alpha+1)\cdots(\alpha+n)}{n!}\right)$$

respectively.

A. B. Effimov¹²³ considered the approximation of continuous function by its partial sums and proved the following

Theorem A Let $f(x) \in H[\omega]_c$. Then

$$\sup_{f \in H(\varpi)_{\sigma}} \|f(x) - S_{\pi}(f, x)\|_{c} = \frac{C^{(\pi)}[\varpi]}{\pi} \log n + O\left(\omega\left(\frac{1}{n}\right)\right),$$

where $C^{(n)}[\omega] = \sup_{f \in H[\omega]_0} \left| \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \right|$.

Xie Tingfan^[1] considered the approximation of continuous function by its Cesáro means and proved the following

^{*} Received May, 1, 1981.

Theorem B Suppose that $-1 < \alpha \le 0$ and $\varepsilon_n \downarrow 0$ as $n \to \infty$. If $f \in \mathbb{C}_{2\pi}$ satisfies the one-side condition

$$f\left(x+\frac{2\pi}{2n+1+\alpha}\right)-f(x)\geqslant -\varepsilon_n$$
 $(|x|\leqslant \pi, n=1,2,3,\cdots),$

then

$$\|\sigma_n^a(f) - f\|_c = O\left(\varepsilon_n \int_{\frac{1}{n}}^{\pi} \frac{dt}{n^a t^{1+\alpha}} + \int_{\frac{1}{n}}^{\pi} \frac{\omega(f, t)}{n^{1+\alpha} t^{\alpha+2}} dt\right).$$

In the present peper, we consider the approximation of continuous function by its harmonic means, and establish the following theorems.

Theorem 1 Let $f(x) \in H[\omega]_c$. Then

$$\sup_{f \in H(\omega)_0} \|N_n(f,x) - f(x)\|_c = \frac{C^{(n)}[\omega]}{2\pi} \log n + O\left(\omega\left(\frac{1}{n}\right)\right),$$

where

$$C^{(n)}[\omega] = \sup_{f \in H(\omega)_0} \left| \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \right|.$$

Theorem 2 Suppose that $\varepsilon_n \not\downarrow 0$ as $n \to \infty$. If $f \in C_{2r}$ satisfies the one-side condition

$$f\left(x+\frac{\pi}{n}\right)-f(x)\geqslant -\varepsilon_n$$
 $(|x|\leqslant \pi, n=1,2,3,\cdots),$

then

$$||N_n(f,x)-f(x)||_c = O\left(\varepsilon_n \log n + \frac{1}{n \log n} \int_{\frac{2\pi}{n}}^{x} \frac{\omega(f,t)}{t^2} \log \frac{1}{t} dt\right).$$

For the proof of theorem 1 we need the following lemmas.

Lemma 1 Let D₁(t) be a Dirichlet kernel with order v. Then we have

$$\sum_{v=0}^{n} \frac{D_{v}(t)}{n-v+1} = \frac{1}{2\sin\frac{t}{2}} \left[\log \frac{1}{2\sin\frac{t}{2}} \sin\left(n + \frac{3}{2}\right)t - \left(\frac{t}{2} - \frac{\pi}{2}\right) \cos\left(n + \frac{3}{2}\right)t \right] + O\left(\frac{1}{nt^{2}}\right), \quad (0 < t < \pi).$$

Lemma 2 If $f(x) \in C_{2z}$, then

$$N_{n}(f,x) - f(x) = \frac{1}{2\pi P_{n}} \int_{\frac{1}{n}}^{x} \frac{\varphi_{x}(t)}{2\sin{\frac{t}{2}}} \log{\frac{1}{2\sin{\frac{t}{2}}}} \sin{\left(n + \frac{3}{2}\right)} t dt + O\left(\omega\left(f, \frac{1}{n}\right)\right),$$

where

$$\varphi_s(t) = f(x+t) + f(x-t) - 2f(x)$$

The proof of theorem 2 depends on the following lemmas.

Lemma 3 Let $f \in C_{2s}$. Then

$$N_n(f,x) - f(x) = \frac{1}{\pi P_n} \sum_{v=3}^{2n_0} \frac{\log \frac{1}{2\sin t_v^*/2}}{t_v^*} (-1)^v \int_0^{\frac{2\pi}{n}} \{f(x+t_v^*+t) - f(x+t_v^*-t)\}^{\frac{2\pi}{n}}$$

$$+f(x-t,-t)-f(x-t,+t)$$
 sinntdt $+O(o(f,-t))$,

where

$$n = \max_{t \neq \tau}, \quad t = \frac{v}{n} \pi$$

Lemma 4 If $f \in C_{2\pi}$, then

$$N_n(f,x)-f(x)=-\frac{1}{2}N_n(\Delta_n f,x)+O\left(\omega\left(f,\frac{1}{n}\right)\right),$$

where

$$\Delta_n f(x) = f\left(x + \frac{\pi}{n}\right) - f(x).$$

References

- [1] 谢庭藩,杭州大学学报(自然科学报)3(1979)18-28。
- [2] Ефимов, А. Б., Изв. АН, СССР, Серия матем., 23 (1959), 115-134.