A Discussion on the Existence of Limit Cycle

of Equations
$$\dot{x} = P(y)$$
, $\dot{y} = Q(x,y)^*$

Wu Kuiguang (吴葵光)

(Hainan Teachers' College)

For the system of differential equations having the form

$$\dot{x} = P(y), \qquad \dot{y} = Q(x, y), \tag{1}$$

R. M. Cooper has given an analytic criterion for the existence of limit cycle. [1] In which $P: R^1 \rightarrow R^1$ and $Q: R^2 \rightarrow R^1$ are everywhere continuous and locally Lipschitzian, $Q_y(x,y)$ is continuous at (0,0) and is defined for all (x,y). His result is as follows:

Theorem. The system (1) has at least one stable limit cycle whenever (1) yP(y) > 0 $(y \neq 0)$, xQ(x,0) < 0 $(x \neq 0)$, $(\mathbb{T}) \int_0^{\pm \infty} p(y) dy = +\infty$, $\int_0^{\pm \infty} Q(x,0) dx = -\infty$, (II) $Q_y(0,0) > 0$, (IV) there exist numbers m, a > 0 such that $Q_y(x,y) \le -m < 0$ for |x| > a, (V) $\frac{1}{P(y)} \sup_{|x| \le a} Q(x,y) = O^+(1)$ as $|y| \to +\infty$.

But this theorem is not true. In this paper we give a counterexample and some additional conditions to ensure the existence of limit cycle for system (1).

Example.
$$\dot{x} = y^{2k+3}$$
, $\dot{y} = Q(x,y)$, (2)
where $Q(x,y) = \begin{cases} y + 2y^{2k+1} - x^{2k+3} & \left(|x| < \sqrt{\frac{\pi}{2}} \right), \\ y \sin x^2 + y^{2k+1} (1 + \sin x^2) - x^{2k+3} & \left(\sqrt{\frac{\pi}{2}} \leqslant |x| \leqslant \sqrt{\frac{3\pi}{2}} \right), \\ -y - x^{2k+3} & \left(\sqrt{\frac{3\pi}{2}} \leqslant |x| \right) \end{cases}$

Letting $a=\sqrt{\frac{3\pi}{2}}$, m=1, it is not difficult to show that the system (2) satisfies the conditions (I)—(∇). Suppose it has a limit cycle L, then L is symmetric to (0,0). Let $x_1=-x$, we turn over the part of L on the left half plane x<0 to the right half plane, and denote it by L', then L and L' both pass through same points $A(0,y_0)(y_0>0)$ and $B(x_0,0)$. Let $\lambda(x,y)=\int_0^y P(y)dy-\int_0^x Q(x,0)dx$, in the vertical strip $|x|<\sqrt{\frac{\pi}{2}}$, $\frac{d\lambda}{dt}=y^{2k+4}(1+y^{2k})>0$ $(y\neq 0)$, so that $|x_0|>\sqrt{\frac{\pi}{2}}$. We denote

^{*} Received July 18, 1981.

the equations of the parts of L and L' between points A and B by $y = y_1(y)$ and $y = y_2(x)$, respectively. Hence $\frac{d\lambda}{dx} = Q[x, y_1(x)] - Q(x, 0)$ on L, and $\frac{d\lambda_1}{dx} = -Q[-x, y_2(x)] + Q(-x, 0)$ on L'.

It must be $\int_{0}^{x_{0}} \left(\frac{d\lambda}{dx} - \frac{d\lambda_{1}}{dx}\right) dx = 0, \text{ but } \int_{0}^{x_{0}} \left(\frac{d\lambda}{dx} - \frac{d\lambda_{1}}{dx}\right) dx = \int_{0}^{x_{0}} \left\{Q[x, y_{1}(x)] - Q[-x, y_{2}(x)]\right\} dx = \int_{0}^{x_{0}} \left(y_{1} + y_{1}^{2k+1} + y_{2} + y_{2}^{2k+1}\right) dx + \int_{\sqrt{\frac{\pi}{2}}}^{\sqrt{\frac{3\pi}{2}}} \left[(y_{1} + y_{2}) \sin x^{2} + (y_{1}^{2k+1} + y_{2}^{2k+1})(1 + y_{2}^{2k+1})] dx + \int_{\sqrt{\frac{3\pi}{2}}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{\sqrt{\frac{3\pi}{2}}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right) dx + \int_{0 \le x \le x_{0}}^{x_{0}} \left(-y_{1} - y_{2}\right$

Since $\frac{dy_1}{dx} = \frac{-y_1(x) - x}{[y_1(x)]^{2k+3}} < 0$, $\frac{d\lambda}{dt} = -y_1^{2k+4} < 0$ for $x > \sqrt{\frac{3\pi}{2}}$, and $\frac{dy_1(x)}{dx} < 3$ for $0 \le x \le \sqrt{\frac{3\pi}{2}}$, we have $y_{\text{max}} < y_0 + 3\sqrt{\frac{3\pi}{2}}$. Suppose the line $x = \sqrt{\frac{3\pi}{2}}$ intersected L at C, we have $\lambda(B) < \lambda(C)$, this means that $x_0^{2k+4} < y_0^{2k+4} + \sqrt{\frac{3\pi}{2}}^{2k+4} < (3y_{\text{max}})^{2k+4}$, hence $x_0 < 3y_{\text{max}}$.

If k is a sufficiently large integer, then

$$\int_{0}^{x_{0}} \left(\frac{d\lambda}{dx} - \frac{d\lambda_{1}}{dx}\right) dx > y_{0}^{2k+1} - 8\left(y_{0} + 3\sqrt{\frac{3\pi}{2}}\right)^{2} > 0.$$

This contradiction shows that Cooper's theorem is not true. In his proof, he showed $\lambda_3 - \lambda_1 \rightarrow -\infty$ as $y_1 \rightarrow +\infty$, and from this, he asserted that $|y_3| - |y_1| \rightarrow -\infty$ as $y_1 \rightarrow +\infty$. But this assertion is not true. For example, let P(y) = y, then

$$\lambda_3 - \lambda_1 = \int_{y_3}^{y_4} y dy = \frac{1}{2} (|y_3| + y_1) (|y_3| - y_1) \to \infty \text{ as } y_1 \to +\infty,$$

and it cannot follow that $|y_3| - y_1 \rightarrow \infty$ as $y_1 \rightarrow + \infty$.

Moreover, from $\lambda_5 - \lambda_4 < 0$ it cannot be inferred that $|y_5| < |y_4|$, because P(y) is not odd function in general.

Under some additional conditions, we have proved the following Theorem. The system (1) has at least one stable limit cycle whenever (I)—(∇) and (∇ I) there exist numbers $N_2 > 0 > N_1$ such that $Q(x, N_1) > 0$ (a < x) and $Q(x, N_2) < 0$ (x < -a), or $(\nabla$ I)' $\frac{P(y)}{v} = O^+(1)$ as $|y| \to \infty$.

In particular, if Q(x,0) is bounded, then it follows from (I)—(∇) that the condition (∇) is satisfied.

Reference

[1] Cooper, R. M. J. Math. Anal. and Appl, 34 (1971), 412-417.