On Representing the General Solution with the Special Solutions for the Differential Equation $y' = \sum_{i=0}^{n} a_i(x) y^{i*}$

Guan Ke-ying (管克英)

(Institute of Applied Mathematics, Academia Sinica)

It is well known that the n+1 coefficients of the equation

$$y' = a_n(x)y^n + a_{n-1}(x)y^{n-1} + \dots + a_1(x)y + a_0(x)$$
(1)

can be completely determined by any n+1 different special solutions of the same equation. Hence, any solution of the same equation can be completely determined by its initial value and the n+1 special solutions. In addition, when $0 \le n \le 2$, the general solution of Eq. (1) can be represented with n+1 different special solutions and an integral constant, and the representation is independent of the concrete forms of the coefficients $a_i(x)$. Therefore, we give

Definition 1 For a definite non negative integer n, the function $F_n(y_1, y_2, \dots, y_{n+1}, C)$, which is independent of the coefficients $a_i(x)$, $i = 0, 1, 2, \dots, n$, is called the representative function of the general solution of Eq. (1), if the general solution of Eq. (1) can be represented by

$$y(x) = F_n(y_1(x), y_2(x), \dots, y_{n+1}(x), C)$$
 (2)

where $y_i(x)$, $i=1,2,\dots,n+1$, are any n+1 different special solutions of the same equation, and C is the integral constant.

In this connection, we deduce

Theorem 1 If $F_n(y_1, \dots, y_{n+1}, C)$ is a representative function of the general solution, then, $y = F_n(y_1, \dots, y_{n+1}, C)$ is the general solution of the following first order partial differential equation system

$$\begin{pmatrix}
1 & 1 & \cdots & 1 \\
y_1 & y_2 & \cdots & y_{n+1} \\
y_1^2 & y_2^2 & \cdots & y_{n+1} \\
\vdots & \vdots & & \vdots \\
y_1^n & y_2^n & \cdots & y_{n+1}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial y}{\partial y_1} \\
\frac{\partial y}{\partial y_2} \\
\vdots \\
\frac{\partial y}{\partial y_{n+1}}
\end{pmatrix} = \begin{pmatrix}
1 \\
y \\
\vdots \\
y^n
\end{pmatrix}$$
(3)

^{*}Received Oct. 4, 1981.

and vice versa.

By studying the consistency of the system (3), we obtain

Conclusion 1 When $n \ge 3$, there exists no representative function of the general solution.

Consider a more general problem. Let $a_1 < a_2 < \dots < a_n$ are n definite real numbers. We give

Definition 2 The function $F_{\alpha_1,\dots,\alpha_n}(y_1,\dots,y_n,C)$ is called the representative function of the general solution of the equation

$$y' = a_1(x)y^{a_1} + a_2(x)y^{a_2} + \dots + a_n(x)y^{a_n}$$
 (4)

if the form of the function is independent of the coefficients $a_i(x)$, $i=1,2,\dots,n$, and if the general solution of Eq. (4) can be represented by

$$y(x) = F_{\sigma_1, \dots, \sigma_n}(y_1(x), \dots, y_n(x), C)$$
 (5)

where $y_i(x)$, $i=1,2,\dots,n$, are any n different special solutions of the same equation, and C is the integral constant.

Using the previous method, we obtain the following conclusions:

Conclusion 2 When n=1, if $\alpha_1=1$, then $F_{\alpha_1}(y_1,C)=Cy_1$, and if $\alpha_1\neq 1$, then $F_{\alpha_1}(y_1,C)=(y_1^{1-\alpha_1}+C)^{\frac{1}{1-\alpha_1}}$.

Conclusion 3 When n=2, if and only if one of a_1 and a_2 is equal to 1, there exists a representative function of the general solution, $F_{a_1 a_1}(y_1, y_2, C) = [y_1^{1-a} + C(y_2^{1-a} - y_1^{1-a})]^{\frac{1}{1-a}}$, where a is equal to one of a_1 and a_2 which is not equal to 1. The corresponding equation is just the Bernoulli equation.

Conclusion 4 When n=3, if and only if $\alpha_2=1$ and $\alpha_1+\alpha_3=2$, there exists a representative function of the general solution, $F_{\alpha_1:\alpha_2:\alpha_3}(y_1,y_2,y_3,C)=\{z_1+\lfloor (z_2-z_1)^{-1}+C((z_3-z_1)^{-1}+(z_2-z_1)^{-1})\rfloor^{-1}\}^{\frac{1}{1-\alpha_2}}$, where $z_i=y_i^{1-\alpha_1}$, i=1,2,3. By the transformation $z=y^{1-\alpha_2}$, the corresponding equation can be transformed into the Riccati equation.

Conclusion 5 When $n \ge 4$, for any different $\alpha_1, \dots, \alpha_n$, there exists no representative function of the general solution.

The conclusions obtained show that the Bernoulli equation and the Riccati equation occupy special positions in the equations with form (4).