Some Optimal Block-Factorial Designs*

Zhu Xianhai (朱显海)

(Northeast Normal University)

The theory of optimal design plays a fundamental role in experimental design. Some of the results have been widely applied to the realistic world. In[1], Kiefer proved the optimality of some block designs. In this paper some block-factorial designs are discussed.

When a block design $d_2(v_2,b,k)$ is superimposed on other block design $d_1(v_1,b,k)$, the resulting structure is called a block-factorial design and is abbreviated as d_1*d_2 . The collection of all such designs is denoted by $\Omega(v_1,v_2,bk)$ or Ω .

If d_1, d_2 are uniform and they are orthogonal to each other, the structure can be considered as an orthogonal design with three factors. In [2] Cheng pointed out that the designs are universally optimal. If we remove the conditions of uniformity entirely or partly, optimality results of some block-factorial designs are proved.

For any $d \in \Omega(v_1, v_2, bk)$, we assume the linear model

$$EY_d = X_d\theta, \qquad VarY_d = \sigma^2 I_N \tag{1}$$

where $Y_d = (y_1, y_2, \dots, y_N)'$ is the $N \times 1$ vector of observations, X_d is an $N \times p$ design matrix, $\theta = (\rho_1, \rho_2, \dots \rho_{\nu_1}, \tau_1, \tau_2, \dots \tau_{\nu_2}, \beta_1, \beta_2, \dots \beta_b)'$ is a vector of unknown parameters, ρ_i is the effect of ith level of 1st factor, τ_i is the effect of jth level of 2nd factor, β_k is the effect of kth block, $\sigma^2 > 0$ is known or unknown and I_N is the $N \times N$ identity matrix. Then

$$X_d'X_d = \begin{pmatrix} \operatorname{diag}(r_1^{(1)}, r_2^{(1)}, \cdots, r_{v_1}^{(1)}) & N_{12} & N_{10} \\ N_{21} & \operatorname{diag}(r_1^{(2)}, r_2^{(2)}, \cdots, r_{v_1}^{(2)}) & N_{20} \\ N_{01} & N_{02} & kI_b \end{pmatrix}$$
 (2)

where diag (a_1, a_2, \dots, a_k) is the diagonal matrix with diagonal elements a_1, a_2, \dots, a_k , $r_j^{(l)}$ is the number of times that the jth level of the lth factor appears in the design, N_{12} is the incidence matrix between the 1st and 2nd factors, i.e., the (s, u)th element of N_{12} is the number of times that the sth level of 1st factor and uth level of 2nd factor appear together in the design, and N_{10} is the incidence matrix between the lth factor and the block, l=1,2.

^{*}Received Apr. 20, 1981

From (1), the information matrix for estimating the effects of 1st factor and 2nd factor jointly is

$$\begin{pmatrix}
\operatorname{diag}(r_{1}^{(1)}, r_{2}^{(1)}, \dots, r_{v_{1}}^{(1)}) & N_{12} \\
N_{21} & \operatorname{idag}(r_{1}^{(2)}, r_{2}^{(2)}, \dots, r_{v_{n}}^{(2)})
\end{pmatrix} - \binom{N_{10}}{N_{20}} \frac{1}{k} I_{b}(N_{01} N_{02})$$

$$= \binom{C_{d11} & C_{d12}}{C_{d21} & C_{d22}}$$
(3)

where $C_{di1} = \operatorname{diag}(r_1^{(1)}, r_2^{(1)}, \cdots, r_{v_1}^{(1)}) - k^{-1}N_{10}N_{01}, C_{di2} = N_{12} - k^{-1}N_{10}N_{02}$

 $C_{d22} = \text{diag}(r_1^{(2)}, r_2^{(2)}, \dots, r_{\nu_1}^{(2)}) - k^{-1}N_{20}N_{02}$, and A denotes a generalized inverse of A.

If we are interested only in estimation of linear combinations $\Sigma_i c_i \rho_i$, we obtain $C_d^{(1)} = C_{d11} - C_{d12} C_{d22} C_{d21}$ for the information matrix of d for $\rho = (\rho_1, \rho_2, \dots, \rho_{v_2})'$. Similarly, we obtain $C_d^{(2)} = C_{d22} - C_{d21} C_{d11} C_{d12}$ for the information matrix of d for $\tau = (\tau_1, \tau_2, \dots, \tau_{v_2})'$.

An optimality criterion is a function $\Phi: \mathcal{B}_{v,0} \to (-\infty,\infty]$, where $\mathcal{B}_{v,0}$ is the collection of $v \times v$ nonnegative definite matrices with zero row and column sums. A design is called Φ -optimal if it minimizes $\Phi(C_d^{(1)})$ or $\Phi(C_d^{(2)})$ over the competing designs depending on which effects we are intrested in. Note that $C_d^{(1)} \in \mathcal{B}_{v_0,0}$ and $C_d^{(2)} \in \mathcal{B}_{v_0,0}$ in our setting.

Kiefer^[3] introduced the notion of universal optimality. A design d^* is called universally optimal if it is Φ -optimal for all Φ satisfying (I) Φ is convex, (I) Φ (bC) is nonincreasing in the scalar $b \ge 0$, (II) Φ is invariant under any simultaneous permutation of rows and columns of C. Using a tool due to Kiefer^[3], the following theorem is proved:

Theorem 1 If there is a $d^* \in \Omega$ satisfying the conditions: (I) $d^* = d_1 * d_2$, where d_1 is uniform design with parameters (v_1, b, k) , d_2 is BIBD $(v_2, b, k, r^{(2)}, \lambda)$; (II) $N_{12} = (v_1 v_2)^{-1} NJ$, where J is a matrix with all its entries 1, then d^* is universally optimal for the estimation of the effect of 1st factor as well as 2nd factor over Ω .

If we restrict the competing designs to a smaller class and utilize a result of Ehrenfeld^[4], then some stronger optimality results can be proved. Let $\Omega^* = \Omega^*(v_1, v_2, bk) = \{d: d \in \Omega(v_1, v_2, bk), r_1^{(1)} = r_2^{(1)} = \cdots = r_{v_1}^{(1)} = r_1^{(1)}\}$, then we have

Theorem 2 Under the assumptions of theorem 1, d^* minimizes the variance of the best linear unbiased estimator of any contrast among the effect of 1st factor ρ over Ω^* .

Using Kiefer's methods, we also proved following theorems:

Theorem 3 If there is a $d^* \in \Omega$ satisfying the conditions: (I) $d^* = d_1 * d_2$, where d_1 is uniform design, d_2 is BBD (v_2, b, k) , (II) $N_{12} = (v_1 v_2)^{-1} N J$, then d^* is universally optimal for the effect of 1st factor as well as 2nd factor over Ω .

九

Theorem 4 If there is a $d^* \in \Omega$ satisfying the conditions: (I) $d^* = d_1 * d_2$, where d_1 is BIBD $(v_1, b, k, r^{(1)}, \lambda^{(1)})$, d_2 is BIBD $(v_2, b, k, r^{(2)}, \lambda^{(2)})$, (II) $N_{12} = (v_1 v_2)^{-1}$ NJ, (II) $N_{10}N_{02} = (v_1 v_2)^{-1}NkJ$, then d^* is universally optimal for the effect of 1st factor as well as 2nd factor over Ω .

References

- [1] Kiefer, J., Ann. Math. Statist. 29 (1958), 675-699.
- [2] Cheng Ching-Shui, Ann. Statist. 8 (1980), 447-453.
- [3] Kiefer, J., In A Survey of Statistical Designs and Linear Models. (J. N Srivastava, ed.) North Holland, Amsterdam (1975), 333—353.
- [4] Ehrenfeld, S., Proc. Third Berkeley Symposium 1, Univ. of Califonia Press (1955), 57-67.