Fixed Pansystems Theorems and Pansystems Catastrophe Analysis of Panweighted Network

Wu Xuemou (吴学谋)

Let $I = \{(x,x) \mid x \in G\}$, $\delta \in P(G^2)$, $I \leq \delta$, $\delta = \delta^{-1}$, $G_i = \max\{E \mid E \subset G, E^2 \leq \delta\}$ do not be reduced to single point; $g \subset G^2 \times W$, $D \subset W$, $\varphi = g \circ D$. If $\varphi \vee \varphi^{-1} \vee I \leq \delta$, then $G_i \cap (G_i \circ \varphi \cup \varphi \circ G_i) \neq \emptyset$. If $(\varphi \wedge \varphi^{-1}) \vee I \leq \delta$, then $G_i \cap G_i \circ \varphi \cap \varphi \circ G_i \neq \emptyset$. If $(\varphi^i \wedge \varphi^{-i}) \vee I \leq \delta$, then there exist positive integers m, n, such that $G_i \cap G_i \circ \varphi^{(m)} \cap \varphi^{(n)} \circ G_i \neq \emptyset$, where φ^i is the transitive closure of φ , and $\varphi^{(m)}$ is the composition of m times of φ itself. If $(\overline{\varphi} \wedge \overline{\varphi}^{-1}) \vee I \geq \delta$, $\varphi \cap I = \emptyset$, then $G_i \cap G_i \circ \varphi \cap \varphi \circ G_i = \emptyset$, where $\overline{\varphi} = G^2 - \varphi$. If $\overline{\varphi} \vee \overline{\varphi}^{-1} \vee I \geq \delta$, $\varphi \cap I = \emptyset$, then $G_i \cap (G_i \circ \varphi \cup \varphi \circ G_i) = \emptyset$. If $(\varphi \vee \varphi^{-1} \vee I)^i \leq \delta$, then $G_i \circ \varphi$, $\varphi \circ G_i \subset G_i$; furthermore if $I \leq \varphi \circ \varphi^{-1}$, then $G_i = \varphi \circ G_i$; if $I \leq \varphi^{-1} \circ \varphi$, then $G_i = G_i \circ \varphi$. The results obtained include some extensions of Kakutani-type theorem. For related investigation refer to: Wu Xuemou, Pansystems Methodology: Concepts, Theorems and Applications $(\nabla)(\nabla I)$, Science Exploration, $(\nabla I)(\nabla I)$, Exploration of Nature, $(\nabla I)(\nabla I)$, Exploration of Nature, $(\nabla I)(\nabla I)$, Exploration of Nature, $(\nabla I)(\nabla I)$