Numbers of Topologies and Lattices of Sets on an Infinite Set*

Yang An-zhou (楊安洲)

Zheng Chong-you (郑崇友)

(The Industrial University of Peking)

(Peking Teacher's College)

Let X be an infinite set, $K = \{\tau : \tau \text{ is a topology on } X\}$, define $\tau \sim \sigma$ iff $(\exists f)$ (f is a homeomorphism from (X, τ) to (X, σ)), $\tau \cong \sigma$ iff $(\exists f)$ (f is a lattice-isomorphism from τ to σ), $\langle \tau \rangle = \{\sigma : \sigma \sim \tau\}$, $\widehat{\tau} = \{\sigma : \sigma \cong \tau\}$ (for a given $\tau \in K$), $K^*(\subseteq K)$ is an incomparable class iff $(\forall \tau \in K^*)$ $(\forall \sigma \in K^*)$ $(\tau \neq \sigma \rightarrow \tau \text{ and } \sigma \text{ are incomparable})$.

Theorem 1 If $K_2 = \{ \langle \tau \rangle : \tau \in K \& (X, \tau) \text{ is a Hausdorff space} \}$, then $|K_2| = 2^{2^{|X|}}$ = exp (exp(|X|)).

Theorem 2 If $C_2 = \{\tau : \tau \in K \& (X, \tau) \text{ is a Hausdorff space} \}$, for an incomparable class C_2^* ($\subset C_2$) we define $K_2^* = \{\langle \tau \rangle : \tau \in C_2^* \}$, then $\max\{|K_2^*|\} = \sup\{|K_2^*|\} = |K| = \exp(|X|)) = \frac{|X|}{2}$.

Theorem 3 If $K_L = \{\widehat{\tau} : \tau \in K\}$, then $|K_L| = \exp((|X|))$.

Theorem 4 If $K_C = \{\tau : \tau \in K \& \tau \text{ is a complete lattice of sets with respect to the operations of arbitrary intersection and union}, then <math>|K_C| = 2^{|X|} = \exp(|X|)$.

Theorem 5 If $K_{CT} = \{ \langle \tau \rangle : \tau \in K_C \}$, then $|K_{CT}| = |K_C| = 2^{|X|} = \exp(|X|)$.

Theorem 6 If $K_{CL} = \{\widehat{\tau} : \tau \in K_C\}$, then $|K_{CL}| = \exp(|X|)$.

^{*} Received Oct. 20, 1983.