Some Notes on Submanifolds of an Euclidean Space with Conformal Gauss Map*

Ouyang Chongzhen

(Jiangxi University)

Let (M,g) be an m-dimensional Riemannian manifold and $i:M\to E^n$ an isometric immersion of (M,g) into an n-dimensional Euclidean space E^n . Let $V\subset M$ be an open set in which the immersion $i:M\to E^n$ is given by $x^h=x^h(y^a)$, $(h=1,\dots,n;\ \alpha=1,\dots,m)$. Here and in the sequel $x^h(h=1,\dots,n)$ are rectangular coordinates of E^n and $y^a(\alpha=1,\dots,m)$ are local coordinates of a generic point in V. The tangent plane $iM_{ip}=i(M_p)$, $p\in V$, of iM can be considered after a suitable parallel displacement as a point $\Gamma_i(p)$ of the Grassmann manifold G(m,n-m). The mapping $\Gamma:iM\to G(m,n-m)$, $ip\mapsto \Gamma(ip)=\Gamma_i(p)$ is called the Gauss map. The mapping $\Gamma_i:M\to G(m,n-m)$, $p\mapsto \Gamma_i(p)$ is called the Gauss map associated with the immersion i, and $\Gamma_i(M)=\Gamma(iM)$ the Gauss image of M.

Assume M be a connected C^{∞} manifold and the map Γ_i be regular. Let g_i be the Riemannian metric induced from E^n on iM and G_i be the Riemannian metric induced from the standard Riemannian metric \widehat{g} of G(m, n-m) on $\Gamma_i(M)$. If G_i equals $e^{2\rho}g_i$ for some C^{∞} function ρ , namely, $\Gamma_i(iM,g_i) \rightarrow (\Gamma(iM),G_i)$ is a conformal mapping, then the Gauss map Γ_i is said to be conformal. Particularly, if ρ is constant, Γ_i is said to be homothetic. Y. Muto [2] studied submanifolds in E^n with homothetic Gauss map. In this paper we study submanifolds in E^n with conformal Gauss map and obtain the following results.

Theorem 1 Let $i:(M,g)\to E^n$ be an isometric immersion of an m-dimensional locally indecomposable Riemannian manifold (M,g) in E^n . Assume that the Gauss map $\Gamma_i:M\to G(m,n-m)$ is regular. Let G_i be the Riemannian metric induced on $\Gamma_i(M)$. Then.

- (1) $\Gamma_i: M \to G(m, n-m)$ is conformal if and only if G_i is recurrent in (M, g).
- (2) $\Gamma_i: M \to G(m, n-m)$ is homothetic if and only if G_i is parallel in (M, g).

^{*} Received Nov. 9, 1982.

Theorem 2 Let $i:(M,g)\to E^n$ be an isometric immersion of an m-dimensional Riemannian manifold (M,g) in E^n (n>m>3). Assume that the Gauss map $\Gamma_i:M\to G(m,n-m)$ is conformal, and the Gauss image $\Gamma_i(M)$ is totally umbilical and not totally geodesic. Then immersion i is pseudo-umbilical if and only if (M,g) has the constant sectional curvature.

Remark If $\Gamma_i(M)$ is totally geodesic, then it is locally symmetric. Assume that Γ_i is homothetic. Then (M,g) is also locally symmetric. (see [2] Theorem 3.2)

Theorem 3 Let $i: (M,g) \to E^n$ be as above. Assume that $\Gamma_i: M \to G(m,n-m)$ is conformal. If i is minimal, then Γ_i is homothetic, namely $G_i = c^2 g_i$. If moreover $\Gamma_i(M)$ is totally umbilical and not totally geodesic, then (M,g) has the negative constant sectional curvature $K = -\frac{c^2}{m-1}$. Conversely, if (M,g) has the negative constant sectional curvature K and $G_i = -(m-1)Kg_i$, then the immersion i is minimal.

The outline of the proofs:

Let $g_{\mu\lambda}$ be the components of the metric g_i of iM on V, $H_{\mu\lambda}^h(\mu, \lambda = 1, \dots, m; h = 1, \dots, n)$ the components of the second fundamental form of iM, and $G_{\mu\lambda}(\mu, \lambda = 1, \dots, m)$ the components of the metric G_i of $\Gamma_i(M)$. We have

$$G_{\mu\lambda} = \Sigma_h g^{\alpha\beta} H_{\mu\alpha}^h H_{\lambda\beta}^h, \tag{1}$$

where $g^{\alpha\beta}(\alpha, \beta = 1, \dots, m)$ is the contravariant components of g_i .

Assume that the metric G_i of $\Gamma_i(M)$ is recurrent in (M,g), namely, in each V,

$$\nabla_a G_{a,i} = a_a G_{a,i}, \tag{2}$$

where ∇ represents covariant differentiation in (M,g) and $a_{\alpha}(\alpha=1,\dots,m)$ are the components of some vector field on M. If (M,g) is locally indecomposable, then

$$G_{\mu\lambda} = \rho \mathbf{g}_{\mu\lambda} \tag{3}$$

for some function ρ , namely, $(\Gamma_i(M), G_i)$ is conformal to (M,g). Hence, $\Gamma_i: (M,g) \rightarrow (\Gamma_i(M), G_i)$ is conformal. If G_i is parallel in (M,g), namely, in each V,

$$\nabla_a G_{\mu \lambda} = 0, \tag{4}$$

then we have (3) with $\rho = \text{const.}$, Hence, Γ_i is homothetic. The converses are obvious.

It is shown that the totally umbilical submanifold of a locally symmetric Riemannian manifold is conformally flat if it is not totally geodesic. G(m, n-m) is locally symmetric. Therefore, if $\Gamma_i(M)$ is totally umbilical and not totally geodesic, then $\Gamma_i(M)$ is conformally flat.

Assume that im is pseudo-umbilical, namely,

$$\Sigma_h H^h_{\mu 1} H^h = \theta g_{\mu 1}, \tag{5}$$

for some function θ , where $H^h = \frac{1}{m}g^{\mu\lambda}H^h_{\mu\lambda}$ are the components of the mean curvature vector of iM. Using the Gauss equation, we can show that (M,g) is an Einstein manifold. Because Γ_i is conformal, (M,g) is conformally flat. Hence, (M,g) has the constants sectional curvature.

Conversely, if (M,g) has the constant sectional curvature K, then from the Gauss equation and $G_{\mu\lambda} = e^{2\rho} g_{\mu\lambda}$ we can obtain (5) which proves that $i: (M,g) \rightarrow E^n$ is pseudo-umbilical.

The immersion $i: (M,g) \rightarrow E^n$ is minimal if and only if $H^h = 0$, $(h = 1, \dots, n)$. Then we can prove the theorem 3.

References

- [1] Muto Y., J. Math. Soc. Japan, 32(1978), 85-100.
- [2] Muto Y., J. Math. Soc. Japan, 32(1980), 531-555.