Some Results on M-Hyponormal Operators*

Hou Jinchuan (侯晋川)

(Shanxi Teachers College, Linfen)

Let $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on a Hilbert space \mathcal{H} . $T \in \mathcal{B}(\mathcal{H})$ is called a dominant operator if for each $\lambda \in \mathbb{C}$ there exists a number $M_{\lambda} > 0$ such that $\|(T^* - \bar{\lambda})x\| \leq M_{\lambda} \|(T - \lambda)x\|$ for all $x \in \mathcal{H}$. Furthermore, if the constants M_{λ} are bounded by a positive number M_{λ} , then M_{λ} is called M_{λ} meritary operators. In this paper, we give some properties of the operators which are dominant or M_{λ} -hyponormal, and introduce a class M_{λ} of operators which are M_{λ} -hyponormal satisfying some growth condition.

1. Some Properties of Dominant and M-hyponormal Operators.

Proposition 1.1 If T is dominant, then

(1) $0 \in \sigma([T^*, T]);$

第4卷 第2期

1984年4月

- (2) $\sigma(T) \cap \mathbb{R} \neq \phi$ implies $0 \in \sigma(\mathbb{Im} T)$, and $\sigma(T) \cap i\mathbb{R} \neq \phi$ implies $0 \in \sigma(\mathbb{Re} T)$;
- (3) Re $\sigma(T) \subset \sigma(\text{Re } T)$ and Im $\sigma(T) \subset \sigma(\text{Im } T)$.

Proposition 1.2 If T is an invertible dominant operator, then T^{-1} is also. If T is invertible and M-hyponormal, then T^{-1} is M_1 -hyponormal with $M_1 = ||T|| \cdot ||T^{-1}|| \cdot M$.

Proposition 1.3 (1) The set of M-hyponormal operators in $\mathcal{B}(\mathcal{H})$ is norm-closed;

(2) If T is M-hyponormal and N is normal such that TN = NT, then both T+N and NT are M-hyponormal, too.

Proposition 1.4 Let T be a dominant operator. If $\lambda_0 \in \sigma(T)$ such that the descent of $T-\lambda_0$ is finite, then λ_0 is an isolated eigenvalue of T.

Proposition 1.5 Let T be a dominant operator and $f(\lambda)$ an analytic function which is defined on some open set $\Omega \supset \sigma(T)$ and is not a constant in any component of Ω . If f(T) is normal, then T is normal.

Proposition 1.6 If T is M-hyponormal and satisfying one of the following conditions, then T must be normal.

^{*} Received Dec. 23, 1982.

- (1) $\sigma(T^*)$ has analytic capacity zero;
- (2) The continuous capacity of $\sigma(T)$ and the analytic capacity of $[\pi_0(T^*) \cap \partial \sigma(T^*)]^-$ are zero;
 - (3) $\sigma(T)$ is countable;
 - (4) T is polynomially compact.

Corollary 1.1 If T is M-hyponormal and λ_0 is an isolated point in $\sigma(T)$, then $\lambda_0 \in \pi_0(T)$.

Proposition 1.7 Let T be a M-hyponormal operator. If Im T is compact and the restriction of T to $\begin{bmatrix} \bigvee_{\lambda \in x_0(T)} F_{\lambda} \end{bmatrix}^{\perp}$ has no residual spectrum, where $F_{\lambda} = \{x \in \mathcal{H}; (T - \lambda)x = 0\}$, then T is normal.

2. The Weyl's Theorem for M-hyponormal operators.

For $T \in \mathcal{B}(\mathcal{H})$, the Weyl spectrum of T is the set $w(T) = \bigcap\limits_{K \in \mathcal{H}(\mathcal{H})} \sigma(T+K)$, where $\mathcal{H}(\mathcal{H})$ denotes the set of all compact operators in $\mathcal{B}(\mathcal{H})$. We say Weyl's theorem holds for T if w(T) consists precisely of all points in $\sigma(T)$ except the isolated eigenvalues of finite multiplicity.

Theorem 2.1 Weyl's theorem holds for any M-hyponormal operator.

3. The Operators of class (M-G).

Definition We say an operator T belongs to the class (M-G) if T is M-hyponormal and there exists a non-negative function $g_T(t)$ on $(0, +\infty)$ satisfying following two conditions:

- (1) $\overline{\lim}[g_T(n)]^{1/n} < 2$;
- (2) $\|(T-\lambda)^n x\|^2 \leq M^{\rho_x(n)} \|(T-\lambda)^{2n} x\| \cdot \|x\|$, for all $\lambda \in \mathbb{C}$, $x \in \mathcal{H}$ and $n = 1, 2, \dots$, where $\varphi_T(n) = g_T(\log n/\log 2)$.

Proposition 3.1 Let $T \in (M-G)$ and N be a normal operator commuting with T, then both T+N and NT are of class (M-G).

Theorem 3.2 If $T \in (M-G)$, then for some constant $\alpha(T) > 0$, $r\sigma(T) \ge ||T|| / M^{\alpha(T)}$, where $r\sigma(T)$ denotes the spectral radius of T.

Theorem 3.3 If $T \in (M-G)$, then T satisfies the condition (G_1) , i. e., there exists a constant $\alpha(T)$ such that $\|(T-\lambda)^{-1}\| \le \alpha(T)/\text{dist}(\lambda, \sigma(T))$ for all $\lambda \in \sigma(T)$.

Corollary 3.1 Suppose $T \in (M-G)$ and $\sigma(T)$ is contained in a rectifiable curve, then T is normal.

Corollary 3.2 Suppose $T \in (M-G)$. If $\sigma(\operatorname{Im} T)$ is countable and has at most finitely many accumulation points, then T is normal.

Corollary 3.4 If $T \in (M-G)$ and Im T is polynomially compact, then T is normal.

Theorem 3.4 Every $T \in (M-G)$ satisfies a local growth condition of order 1, i. e. for every closed set $\delta \subset \mathbb{C}$ and every $x \in X_T(\delta)$, there exists an analytic function $f: \mathbb{C} \setminus \delta \to \mathcal{H}$ such that $(T-\lambda)f(\lambda) \equiv x$ and $||f(\lambda)|| \leq a(T)[\operatorname{dist}(\lambda, \delta)]^{-1}$, where a(T) is a positive number independent of δ and x.

Theorem 3.5 If $T \in (M-G)$, then T satisfies Dunford's condition (C), that's $X_T(\delta)$ is closed for every closed set $\delta \subset C$.

Corollary 3.5 Let $T \in (M_1 - G)$ and $S \in (M_2 - G)$. If there exist quasiaffinities X and Y such that XT = SX and TY = YS, then $\sigma(T) = \sigma(S)$, If either X or Y is compact, then we also have $\sigma_*(T) = \sigma_*(S)$.

Corollary 3.6 Suppose $T \in (M-G)$. If there is a nonzero $x \in \mathcal{H}$ such that $||T^nx|| \leq Kt^n$ $(n=1, 2, \dots)$, where K, t are constants and $0 < t < ||T||/M^{\alpha(T)}$ $(\alpha(T))$ is same as in Th. 3.2), then T has a nontrivial invariant subspace.

References

- [1] Wadhwa, B. L., M-hyponormal operators, Duke Math. J., 41(1974), 655-660.
- [2] Istratescu, V. 1., Some results on M-hyponormal operators, Math. Seminar notes, 6 (1978), 77-86.
- [3] Putnam, C. R., Spectral and measure inequalities, Trans. Amer. Math. Soc. 231(1977), 519-529.
- [4] Stampfli, J. G. and Wadhwa, B. L., An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J., 25 (1976), 359-365.
- [5] Stampfli, J. G., A local spectral theory for operators V: spectral subspaces for hyponormal operators, Trans. Amer. Math. Soc., 217 (1976), 285-293.
- [6] Williams, L. R., Quasisimilarity and hyponormal operators, J. Operator Theory, 5 (1981), 127-139.