Lacunary Interpolation by Spline (I)*

Zhurui Guo (郭竹瑞) and Maodong Ye (叶懋冬)

(Zhejiang University, Hangzhou, China)

Let f(x) be defined on [0,1], n be any positive integer and [0,1] be subdivided into n equal subintervals. Set

$$h=\frac{1}{n}, f^{(r)}(\nu h)=f^{(r)}_{\nu}, \nu=0,1,\dots,n, r=0,1,\dots,5.$$

For odd n, A. Meir and A. Sharma [1] considered the lacunary spline interpolation as follows:

- 1) $S_n(x) \in C^3[0,1];$ 2) $S_n(x) \in \pi_s$, $x_n \in [\nu h, (\nu+1)h], \nu=0,1,\dots,n-1;$
- 3) $S_n(\nu h) = f_{\nu}$, $S''_n(\nu h) = f''_{\nu}$, $\nu = 0, 1, \dots, n$; 4) $S'''(0) = f'''_{\nu}$, $S'''(1) = f'''_{n}$.

[1] proved that $S_n(x)$ was uniquely determined, and gave the error bounds of approximation of $f(x) \in C^4$ [0,1] by $S_n(x)$. B. K. Swartz and R. S. Varga [2] also gave the degree of approximation of $f(x) \in C^6$ [0,1] by $S_n(x)$. Z. R. Guo [3] obtained the saturation theorem for this approximation. Z. R. Guo [4-5] were also concerned in this kind of interpolation and gave the degree of approximation. In this paper we consider the general lacunary interpolation by quintic splines.

Let Δ : $0 = x_0 < x_1 < \dots < x_n = 1$ be a partition of the interval [0,1] and let S bethe set of all functions S(x) satisfying

(i)
$$S(x) \in C^3[0,1]$$
; (ii) $S(x) \in \pi_5$, $x \in [x_i, x_{i+1}]$, $i = 0, 1, \dots, n-1$.

Put $T = \{0, 1, 2, 3\}$, z_{1i} , $z_{2i} \in T$, $z_{1i} < z_{2i}$. For any given f(x), if $S(x) \in S_{\Delta}$, $S^{(z_{1i})}(x_i) = f^{(z_{1i})}(x_i)$ and $S^{(z_{1i})}(x_i) = f^{(z_{1i})}(x_i)$, $i = 0, 1, \dots, n$, then we denote this kind of interpolation conditions by

$$Z = \begin{pmatrix} z_{20} & z_{21} \cdots z_{2n} \\ z_{10} & z_{11} \cdots z_{1n} \end{pmatrix}.$$

Furthermore, we consider two additional interpolation conditions. Let

$$z' \in T \setminus \{z_{1i}, z_{2i}\}, \ z'' \in T \setminus \{z_{1i}, z_{2i}\}, \ S^{(x')}(x_i) = f^{(x')}(x_i), \ S^{(x')}(x_i) = f^{(x'')}(x_i),$$
 and denote these condition by $b(x_i, z', x_i, z'')$.

We say an interpolation to be of type I, if the corresponding interpolation conditions are

^{*} Received Jan. 3, 1983.

$$\widetilde{Z} = Z + b(x_0, z'; x_n, z'');$$

to be of type II, if

$$\widetilde{Z} = Z + b(x_i, z'; x_j, z''),$$

where $0 \le i < j \le n$ and the equalities do not hold simultaneously here; to be of type III, if

$$\tilde{Z} = Z + b(x_i, z'; x_i, z''), \{z_{1i}, z_{2i}, z', z''\} = T.$$

we denote each type of these interpolations by $S(x)|_{z_0}$

At first, we consider the case of equidistant knots

$$x_i = \frac{i}{n} = ih, \quad i = 0, 1, \dots, n_{\bullet}$$

Set
$$z_i \in T$$
, $i = 1, 2, 3, 4$ and $z_2 > z_1$, $z_4 > z_3$; $\{i_1, i_2\} = T \setminus \{z_1, z_2\}$, $i_1 < i_2$; $\{j_1, j_2\} = T \setminus \{z_3, z_4\}$, $j_1 < j_2$.

For any given α and β let $p(x) \in \pi_5$ be the polynomial uniquely determined by the conditions

$$p^{(z_i)}(0) = p^{(z_i)}(0) = p^{(z_i)}(1) = p^{(z_i)}(1) = 0, \quad p^{(i_i)}(0) = \alpha, \quad p^{(i_i)}(0) = \beta,$$

$$\alpha' = p^{(i_i)}(1), \quad \beta' = p^{(i_i)}(1).$$

:Set

The matrix $B_{(z_1,z_2)}$ stisfying $(\alpha',\beta')=(\alpha,\beta)$, $B_{(z_2,z_2)}$ is called a T-matrix.

We have 36 T-matrices, they are all nonsingular.

Let

$$(k, l) = (\varphi(z'), \psi(z'')),$$

where

$$\varphi(i) = \begin{cases} 1, & i = \max(T \setminus \{z_{20}, z_{10}\}) \\ 2, & i = \min(T \setminus \{z_{20}, z_{10}\}) \end{cases}; \quad \psi(i) = \begin{cases} 1, & i = \min(T \setminus \{z_{1\pi}, z_{2\pi}\}) \\ 2, & i = \max(T \setminus \{z_{1\pi}, z_{2\pi}\}). \end{cases}$$

We prove

Theorem 1 Let
$$B_2 = B_{\begin{pmatrix} z_1 z_{11} \\ z_1 z_{11} \end{pmatrix}} B_{\begin{pmatrix} z_{11} z_{11} \\ z_{11} z_{11} \end{pmatrix}} \cdots B_{\begin{pmatrix} z_{1n-1} z_{1n} \\ z_{1n-1} z_{1n} \end{pmatrix}} = (b_{ij}). \tag{1}$$

A necessary and sufficient condition for the interpolation conditions of type !

$$\widetilde{Z} = Z + b(x_0, z'; x_n, z'') \tag{2}$$

to be regular is $b_{kl} \neq 0$.

proof We denote zero matrix of two rows by 0. Set

$$\{m_{1i}, m_{2i}\} = T \setminus \{z_{1i}, z_{2i}\}, m_{1i} < m_{2i}, i = 0, 1, \dots, n$$

In the interval $[x_0, x_1]$ let $t = \frac{x - x_0}{h}$, then for any given a_0 and b_0 there ex-

ists an unique $p_0(t) \in \pi$, such that

$$p_0^{(z_{10})}(0) = p_0^{(z_{10})}(0) = p_0^{(z_{11})}(1) = p_0^{(z_{11})}(1) = 0, \quad p_0^{(m_{10})}(0) = a_0, \quad p_0^{(m_{10})}(1) = \beta_0$$

By definition of T-matrix, we have

$$(\alpha_1, \beta_1) = (\alpha_0, \beta_0) B_{\begin{pmatrix} z_1, z_1 \\ z_1 \neq z_1 \end{pmatrix}},$$

where $a_1 = p_0^{(m_{11})}(1)$, $\beta_1 = p_0^{(m_{11})}(1)$.

In general, we have

$$(\alpha_i, \beta_i) = (\alpha_0, \beta_0) \beta_{\tau(i)}, \quad i = 1, 2, \dots, n$$

where

$$B_{Z(i)} = B_{(z_{1i},z_{1i})} B_{(z_{1i},z_{1i})} \cdots B_{(z_{ni},z_{ni})} \cdots B_{(z_{ni},z_{ni})}$$

$$(4)$$

Put i = n in (3), (4) and combine (1) we obtain

$$a_n = b_{11}a_0 + b_{21}\beta_0, \quad \beta_n = b_{12}a_0 + b_{22}\beta_0.$$
 (5)

Thus (a_0, β_0) uniquely determines those splines which satisfy the conditions $S(x)|_Z = 0$.

Now consider the boundary interpolation conditions $b(x_0, z'; x_n, z'')$. Suppose $z' = m_{10}$ and $z'' = m_{1n}$. Thus, $\alpha_0 = \alpha_n = 0$ determine the spline which satisfy the conditions

$$S(x) \mid_{Z+b(x_0, m_{10}; x_0, m_{10})} = 0. \tag{6}$$

If $b_{21}\neq 0$ from (5) we obtain $\beta_0 = \beta_n = 0$, consequently $S(x) \equiv 0$. Thus the interpolation condition (2) are regular;

In the other hand, if $b_{21} = 0$, then we may put $a_0 = 0$ and arbitrary $\beta_0 \neq 0$ to determine p(t), thus we obtain a nonzero spline which satisfies (6). Therefore, the interpolation conditions (6) are not regular.

We can prove the case of the other boundary interpolation conditions similarly. Theorem I established;

Since the matrix B_Z is the product of nonsingular matries $B_{\left(\frac{x_{1i}}{x_{1i}},\frac{x_{1i+1}}{x_{1i+1}}\right)}$, so itself is nonsingular. Thus we obtain

Corollary If the interpolation conditions

$$\widetilde{Z} = Z + b(x_0, z_0'; x_0, z_0')$$

are nonregular, let

$$z_0'' = T \setminus \{z_{10}, z_{20}, z_0'\}, \quad z_n'' = T \setminus \{z_{1n}, z_{2n}, z_n'\},$$

then the interpolation conditions

$$Z + b(x_0, z_0', x_n, z_n')$$
 and $Z + b(x_0, z_0', x_n, z_n')$

must be regular;

This means that if the interpolation of type I is nonregular, then, by changing any one of the boundary conditions, the regular interpolation can be obtained.

Theorem 2 A necessary and sufficient condition for the interpolation conditions of type II

$$\tilde{Z} = Z + b(x_i, z'; x_i, z''), 0 \le i < j \le n$$

to be regular is the interpolation conditions of type I

$$\mathbf{Z} = \begin{pmatrix} z_{2i} \cdots z_{2j} \\ z_{1i} \cdots z_{1i} \end{pmatrix} + b(x_i, z'; x_j, z'')$$

to be regular.

Proof Suppose the interpolation conditions are regular, then the spline S(x) such that $S(x)|_{\tilde{z}} = 0$ must vanish on $[x_i, x_j]$, thus $a_i = \beta_i = 0$, therefore S(x) vanishes on $[x_i, x_n]$. Similarly, $a_i = \beta_i = 0$ deduce S(x) also vanishes on $[x_0, x_i]$.

On the other hand, if the interpolation conditions are nonregular, then there exists nonzero spline S(x) such that $S(x)|_{\overline{z}} = 0$, thus, α_i , β_i does not equal to zero simultaneously. As the proof of theorem I, we can extend this spline S(x) to $[x_i, x_n]$ as well as to $[x_0, x_i]$ such that $S(x)|_{\overline{z}} = 0$. Theorem 2 established.

Obviously, we have

Theorem 3 The interpolation conditions of type III

$$\widetilde{Z} = Z + b(x_i, z', x_i, z'')$$

are always regular.

As for the case of unequally distributed knots, a T-matrix depends on the length h of the subinterval, we denote it by $B_{\binom{2}{i}, \frac{p}{2}, \frac{1}{2}}$ (h).

On the interval [0,h], the conditions

$$p^{(z_1)}(0) = p^{(z_1)}(0) = p^{(z_1)}(h) = p^{(z_1)}(h) = 0; \quad p^{(i_1)}(0) = \alpha, \quad p^{(i_1)}(0) = \beta$$

uniquely determine $p(t) \in \pi_s$. Let

$$\alpha' = p^{(i_1)}(h), \ \beta' = p^{(i_1)}(h) \ \text{and} \ (\alpha', \beta') = (\alpha, \beta) \ B_{\binom{r}{2}, \frac{r}{2}, \frac{r}{2}}$$
 (h).

Evidently

$$B_{\binom{z_1z_4}{z_1z_4}}(h) = \binom{b_{11}h^{i_1-j_1}}{b_{21}h^{i_1-j_1}} \frac{b_{12}h^{i_1-j_1}}{b_{22}h^{i_1-j_1}}, \quad \text{if} \quad B_{\binom{z_1z_4}{z_1z_4}} = \binom{b_{11}}{b_{21}} \frac{b_{12}}{b_{22}} \Big)_{\bullet}$$

In this case, theorem 1 and its corollary still hold, whereas

$$B_Z = B_{\begin{pmatrix} z_1, z_{11} \\ z_2, z_1 \end{pmatrix}}(h_1) B_{\begin{pmatrix} z_{21}, z_{11} \\ z_1, z_2 \end{pmatrix}}(h_2) \cdots B_{\begin{pmatrix} z_{1n-1}, z_{1n} \\ z_{2n-1}, z_{2n} \end{pmatrix}}(h_n) = (b_{ij}).$$

Similarly, Theorems 2,3 hold for the case of unequally distributed knots.

Reference

- [1] Meir, A. and Sharma, A., Lacunary interpolation by splines, SIAM J. Numer. Anal. 10(19-73), 433-442.
- [2] Swartz, B. K. and Varga, R. S., A note on lacunary interpolation by spline, SIAM J. Numer. Anal. 10(1973), 443-447.
- [3] Guo, Z. R., Lacunary interpolation by splines, Acta Math. Sinica 18 (1975), 247-253.
- [4] ---, Note on lacunary interpolation by spline, Math. Numer. Sinica (1981).
- [5] —, On lacunary spline interpolation, Math. Numer. Sinica (1982). 109-113.