The Decision Problems for Properties
of Transformation Groups\*

Lin Yucai (林毓材)

(The Kuming Teacher's College)

## Abstract

In this paper the fundamental result about the decision problems for properties of FRT-groups (i. e. the groups each of which is isomorphic with a group generated by a finite number of recursive transformations) has been proved: Let p be any algebraic property for groups such that there is a FRT-group  $G_1$  which has the property p, a FRT-group  $G_2$  which has not the property p, and  $G_2$  is not isomorphic with any subgroup of any FRT-group which has the property p. Then the problem of deciding, for any given group P genetated by a finite number of recursive transformations, whether or not the group G isomorphic with P has the property p is unsolvable.

A sequence of important consequences may be obtained from the fundamental result.

Let G be any abstract group. If there exists a transformation group  $P = (A, B, \dots, C)$  generated by a finite number of recursive transformations  $A, B, \dots, C$ , such that  $G \simeq P$ , then we say that P is a representative of G as a group generated by a finite number of recursive transformations, or P is a FRT-representative of G; say that G is a group which has a representative as a group generated by a finite number of recursive transformations, or G is a FRT-group, and write that  $G = G_P$ .

In this paper the following fundamental result about the decision problems for algebraic properties of FRT-groups is proved.

**Theorem** Let p be any algebraic property for groups (i. e. a property for groups which is invariable under isomorphisms) such that there is a FRT-group  $G_1$  which has the property p, a FRT-group  $G_2$  which has not the property p, and  $G_2$ 

<sup>\*</sup> Received Nov. 5, 1983. Recommended by Yang An-zhou(杨安州)。

is not isomorphic with any subgroup of and FRT-group which has the property p. Then the problem of deciding, for any given FRT-representative P, whether or not  $G_P$  has the property p is unsolvable.

From this the following important consequences follows.

**Corollary** Let p be any algebraic property for groups which is hereditary and non-trivial with respect to FRT-groups (i. e. there is a FRT-group  $G_1$  which has the property and a FRT-group  $G_2$  which has not the property). Then the problem of deciding, for any given FRT-representative P, whether or not  $G_P$  has the property p is unsolvable.

Thus the following decision problems are all unsolvable: deciding, for any given FRT-representative P, whether or not  $G_P$  is

- (1) cyclic, (2) finite, (3) free, (4) commutative, (5) solvable,
- (6) the group of units, (7) torsion-free group, and so on.

To prove the theorem we need a lemma.

**Lemma** Let  $\mathscr{D}$  be the set of all FRT-representatives,  $\mathscr{T}$  be the set of all recursive transformations on N. Then there exists a mapping  $\tau$  from  $\mathscr{D} \times \mathscr{T}$  into  $\mathscr{D}$  such that, for any  $(P,T) \in \mathscr{D} \times \mathscr{T}$ ,

$$\tau(P,T) \simeq \begin{cases} \{e\}, & \text{if } T = I; \\ P, & \text{if } T \neq I, \end{cases}$$
 (1)

where I is the identity transformation.

**Proof** For any recursive transformation S on N define transformations  $S_2$  and  $S_3$  on  $N \times N \times N$  as follows:

$$S_2$$
:  $(i,i,k) \rightarrow (i,iS,k)$ ;  $(i,iS,k) \rightarrow (i,i,k)$ ;  $(i,j,k) \rightarrow (i,j,k)$ , if  $j \neq i$ ,  $iS_4$ 

$$S_3$$
:  $(i, i, k) \rightarrow (i, i, kS)$ ;  $(i, j, k) \rightarrow (i, j, k)$ , if  $j \neq i$ 

For any recursive transformations S and T on N, define transformations  $S_T'$  and  $S_T^*$  on  $N \times N \times N$  as follows:

$$S_T' = S_3 T_2 S_3^{-1} T_2$$

$$S_T^*$$
:  $(i,j,k) \rightarrow (i,j,k)S_T'$ , if  $i=j$ , or  $i \neq j$  and  $(i,j) \in T$ ;  
 $(i,j,k) \rightarrow (i,j,kS^2)S_T'$ , if  $i \neq j$  and  $(i,j) \in T$ .

It is easy to see that  $S_2$ ,  $S_3$ ,  $S_T'$ ,  $S_T^*$  are all recursive, and that

$$S'_T$$
:  $(i,i,k) \rightarrow (i,i,k)$  if  $(i,i) \in T$ ;  $(i,i,k) \rightarrow (i,i,kS)$  if  $(i,i) \in T$ ;  $(i,j,k) \rightarrow (i,j,kS^{-1})$  if  $i \neq j$  and  $(i,j) \in T$ ;  $(i,j,k) \rightarrow (i,j,k)$  if  $i \neq j$  and  $(i,j) \in T$ .

Therefore 
$$S_T^*$$
:  $(i, i, k) \rightarrow (i, i, k)$  if  $(i, i) \in T$ ;  $(i, i, k) \rightarrow (i, i, kS)$  if  $(i, i) \in T$ ;  $(i, j, k) \rightarrow (i, j, kS)$ , if  $i \neq j$  and  $(i, j) \in T$ ;  $(i, j, k) \rightarrow (i, j, k)$ , if  $i \neq j$  and  $(i, j) \in T$ .

盤

Let f be any recursive correspondence between  $N \times N \times N$  onto N, and write the image of  $(i, j, k) \in N \times N \times N$  under f to be  $(i, j, k) \in N$ . For any recursive transformations S and T on N define a transformation  $S_T$  on N as follows:

$$S_T = f^{-1} S_T^* f, (2)$$

thus  $S_T$  is recursive.

For any FRT-representative  $P = (A, B, \dots, C)$  and any recursive transformation T on N, form FRT-representative  $P_T$  as:

 $P_T = (A_T, B_T, \dots, C_T)$ . Let  $\tau: \mathscr{D} \times \mathscr{T} \to \mathscr{D}$  be given by  $\tau(P, T) = P_T$ , we prove that  $\tau$  satisfies the property (1).

If T=I, then, for any  $i,j \in N$ ,  $(i,j) \in T$  iff i=j. Hence, by (2),  $A_T=B_T=\cdots=C_T=I$ , and therefore  $P_T \simeq \{e\}$ .

If  $T \neq I$ , then let  $\varphi: P \rightarrow P_T$  satisfy, for any word  $XY \cdots Z \in P$   $(X, Y, \cdots, Z \in \{A, A^{-1}, B, B^{-1}, \cdots, C, C^{-1}\})$ ,

$$\varphi: XY \cdots Z \rightarrow X_T Y_T \cdots Z_T$$

it is clear that  $\varphi$  is a mapping from P onto  $P_T$ , and  $(i, j, k) X_T Y_T \cdots Z_T$ 

$$= \begin{cases} \langle i,j,k \rangle Y_T \cdots Z_T, & \text{if } i=j \text{ and } (i,j) \in T, \text{ or } i \neq j \text{ and } (i,j) \in T \\ \langle i,j,kX \rangle Y_T \cdots Z_T, & \text{if } i=j \text{ and } (i,j) \in T, \text{ or } i \neq j \text{ and } (i,j) \in T \end{cases}$$

$$= \begin{cases} \langle i,j,k \rangle, & \text{if } i=j \text{ and } (i,j) \in T, \text{ or } i \neq j \text{ and } (i,j) \in T \\ \langle i,j,k(XY \cdots Z) \rangle, & \text{if } i=j \text{ and } (i,j) \in T, \text{ or } i \neq j \text{ and } (i,j) \in T \end{cases}$$

$$= \langle i,j,k \rangle (XY \cdots Z)_T.$$

Hence P is homomorphic with  $P_T$  under  $\varphi$ .

Now, if  $A = B = \cdots = C = I$ , then from  $P \sim P_T$  it follows that  $P \simeq P_T (\simeq \{e\})$ . Otherwise, if  $XY \cdots Z \neq I$ , then there is  $k \in N$  such that  $k \neq k(XY \cdots Z)$ .

Since  $T \neq I$ , hence there are m and n such that  $m \neq n$  and  $(m, n) \in T$ . Thus  $\langle m, n, k \rangle X_T Y_T \cdots Z_T = \langle m, n, k \rangle (XY \cdots Z) \rangle \neq \langle m, n, k \rangle$ .

So that 
$$X_T Y_T \cdots Z_T \neq I$$
. Therefore we have  $P \simeq P_T$  again.

Now we prove the theorem.

**Proof of theorem** Let us, for any recursive transformations S and T on N, write the recursive transformation in  $\{(a,b) \mid (a=2x\&b=2y\&(x,y)\in S) \lor (a=2x+1\&b=2y+1\&(x,y)\in S) \lor (a=2x+1\&b=2y+1\&(x,y)\in T) \text{ on } N \text{ as } \binom{S}{T}$ ; for any FRT-representative  $P=(R_1,R_2,\cdots,R_m)$  and  $Q=(S_1,S_2,\cdots,S_n)$ , write the FRT-representative

$$\begin{pmatrix} \begin{pmatrix} R_1 \\ I \end{pmatrix}, \begin{pmatrix} R_2 \\ I \end{pmatrix}, \dots, \begin{pmatrix} R_m \\ I \end{pmatrix}, \begin{pmatrix} I \\ S_1 \end{pmatrix}, \begin{pmatrix} I \\ S_2 \end{pmatrix}, \dots, \begin{pmatrix} I \\ S_n \end{pmatrix} \end{pmatrix}$$

as P\*Q.

Let the FRT-representatives of  $G_1$  and  $G_2$  be  $P_1$  and  $P_2$  respectively, and let  $P_0$  be any FRT-representative which has an unsolvable word problem (for existence of  $P_0$  see [1]). Form FRT-representative Q:

## $Q = P_2^* P_{0a}$

Thus Q has an unsolvable word problem. For any word w of Q (which is obviously a recursive transformation on N), form FRT-representative P(w):

$$P(w) = P_1^*Q_{w_*}$$

Thus, if w = I, then  $Q_w \simeq \{e\}$ ,  $P(w) \simeq P_1$  has property p. If  $w \neq I$ , then  $P(w) \simeq P_1^*Q$  (for  $Q_w \simeq Q$ ). Hence  $P_2$  is isomorphic with a subgroup of P(w). By hypotheses, P(w) has not property p.

Now, if the decision problem mentioned in the Theorem is solvable, the problem of deciding, for any  $w \in Q$ , whether or not w = I is solvable, too. Hence from the fact that Q has an unsolvable word problem, our theorem follows.

## Reference

[1] Lin Yucai, Relation Word Problems.