The Decision Problems for Properties of Transformation Groups* Lin Yucai (林毓材) (The Kuming Teacher's College) ## Abstract In this paper the fundamental result about the decision problems for properties of FRT-groups (i. e. the groups each of which is isomorphic with a group generated by a finite number of recursive transformations) has been proved: Let p be any algebraic property for groups such that there is a FRT-group G_1 which has the property p, a FRT-group G_2 which has not the property p, and G_2 is not isomorphic with any subgroup of any FRT-group which has the property p. Then the problem of deciding, for any given group P genetated by a finite number of recursive transformations, whether or not the group G isomorphic with P has the property p is unsolvable. A sequence of important consequences may be obtained from the fundamental result. Let G be any abstract group. If there exists a transformation group $P = (A, B, \dots, C)$ generated by a finite number of recursive transformations A, B, \dots, C , such that $G \simeq P$, then we say that P is a representative of G as a group generated by a finite number of recursive transformations, or P is a FRT-representative of G; say that G is a group which has a representative as a group generated by a finite number of recursive transformations, or G is a FRT-group, and write that $G = G_P$. In this paper the following fundamental result about the decision problems for algebraic properties of FRT-groups is proved. **Theorem** Let p be any algebraic property for groups (i. e. a property for groups which is invariable under isomorphisms) such that there is a FRT-group G_1 which has the property p, a FRT-group G_2 which has not the property p, and G_2 ^{*} Received Nov. 5, 1983. Recommended by Yang An-zhou(杨安州)。 is not isomorphic with any subgroup of and FRT-group which has the property p. Then the problem of deciding, for any given FRT-representative P, whether or not G_P has the property p is unsolvable. From this the following important consequences follows. **Corollary** Let p be any algebraic property for groups which is hereditary and non-trivial with respect to FRT-groups (i. e. there is a FRT-group G_1 which has the property and a FRT-group G_2 which has not the property). Then the problem of deciding, for any given FRT-representative P, whether or not G_P has the property p is unsolvable. Thus the following decision problems are all unsolvable: deciding, for any given FRT-representative P, whether or not G_P is - (1) cyclic, (2) finite, (3) free, (4) commutative, (5) solvable, - (6) the group of units, (7) torsion-free group, and so on. To prove the theorem we need a lemma. **Lemma** Let \mathscr{D} be the set of all FRT-representatives, \mathscr{T} be the set of all recursive transformations on N. Then there exists a mapping τ from $\mathscr{D} \times \mathscr{T}$ into \mathscr{D} such that, for any $(P,T) \in \mathscr{D} \times \mathscr{T}$, $$\tau(P,T) \simeq \begin{cases} \{e\}, & \text{if } T = I; \\ P, & \text{if } T \neq I, \end{cases}$$ (1) where I is the identity transformation. **Proof** For any recursive transformation S on N define transformations S_2 and S_3 on $N \times N \times N$ as follows: $$S_2$$: $(i,i,k) \rightarrow (i,iS,k)$; $(i,iS,k) \rightarrow (i,i,k)$; $(i,j,k) \rightarrow (i,j,k)$, if $j \neq i$, iS_4 $$S_3$$: $(i, i, k) \rightarrow (i, i, kS)$; $(i, j, k) \rightarrow (i, j, k)$, if $j \neq i$ For any recursive transformations S and T on N, define transformations S_T' and S_T^* on $N \times N \times N$ as follows: $$S_T' = S_3 T_2 S_3^{-1} T_2$$ $$S_T^*$$: $(i,j,k) \rightarrow (i,j,k)S_T'$, if $i=j$, or $i \neq j$ and $(i,j) \in T$; $(i,j,k) \rightarrow (i,j,kS^2)S_T'$, if $i \neq j$ and $(i,j) \in T$. It is easy to see that S_2 , S_3 , S_T' , S_T^* are all recursive, and that $$S'_T$$: $(i,i,k) \rightarrow (i,i,k)$ if $(i,i) \in T$; $(i,i,k) \rightarrow (i,i,kS)$ if $(i,i) \in T$; $(i,j,k) \rightarrow (i,j,kS^{-1})$ if $i \neq j$ and $(i,j) \in T$; $(i,j,k) \rightarrow (i,j,k)$ if $i \neq j$ and $(i,j) \in T$. Therefore $$S_T^*$$: $(i, i, k) \rightarrow (i, i, k)$ if $(i, i) \in T$; $(i, i, k) \rightarrow (i, i, kS)$ if $(i, i) \in T$; $(i, j, k) \rightarrow (i, j, kS)$, if $i \neq j$ and $(i, j) \in T$; $(i, j, k) \rightarrow (i, j, k)$, if $i \neq j$ and $(i, j) \in T$. 盤 Let f be any recursive correspondence between $N \times N \times N$ onto N, and write the image of $(i, j, k) \in N \times N \times N$ under f to be $(i, j, k) \in N$. For any recursive transformations S and T on N define a transformation S_T on N as follows: $$S_T = f^{-1} S_T^* f, (2)$$ thus S_T is recursive. For any FRT-representative $P = (A, B, \dots, C)$ and any recursive transformation T on N, form FRT-representative P_T as: $P_T = (A_T, B_T, \dots, C_T)$. Let $\tau: \mathscr{D} \times \mathscr{T} \to \mathscr{D}$ be given by $\tau(P, T) = P_T$, we prove that τ satisfies the property (1). If T=I, then, for any $i,j \in N$, $(i,j) \in T$ iff i=j. Hence, by (2), $A_T=B_T=\cdots=C_T=I$, and therefore $P_T \simeq \{e\}$. If $T \neq I$, then let $\varphi: P \rightarrow P_T$ satisfy, for any word $XY \cdots Z \in P$ $(X, Y, \cdots, Z \in \{A, A^{-1}, B, B^{-1}, \cdots, C, C^{-1}\})$, $$\varphi: XY \cdots Z \rightarrow X_T Y_T \cdots Z_T$$ it is clear that φ is a mapping from P onto P_T , and $(i, j, k) X_T Y_T \cdots Z_T$ $$= \begin{cases} \langle i,j,k \rangle Y_T \cdots Z_T, & \text{if } i=j \text{ and } (i,j) \in T, \text{ or } i \neq j \text{ and } (i,j) \in T \\ \langle i,j,kX \rangle Y_T \cdots Z_T, & \text{if } i=j \text{ and } (i,j) \in T, \text{ or } i \neq j \text{ and } (i,j) \in T \end{cases}$$ $$= \begin{cases} \langle i,j,k \rangle, & \text{if } i=j \text{ and } (i,j) \in T, \text{ or } i \neq j \text{ and } (i,j) \in T \\ \langle i,j,k(XY \cdots Z) \rangle, & \text{if } i=j \text{ and } (i,j) \in T, \text{ or } i \neq j \text{ and } (i,j) \in T \end{cases}$$ $$= \langle i,j,k \rangle (XY \cdots Z)_T.$$ Hence P is homomorphic with P_T under φ . Now, if $A = B = \cdots = C = I$, then from $P \sim P_T$ it follows that $P \simeq P_T (\simeq \{e\})$. Otherwise, if $XY \cdots Z \neq I$, then there is $k \in N$ such that $k \neq k(XY \cdots Z)$. Since $T \neq I$, hence there are m and n such that $m \neq n$ and $(m, n) \in T$. Thus $\langle m, n, k \rangle X_T Y_T \cdots Z_T = \langle m, n, k \rangle (XY \cdots Z) \rangle \neq \langle m, n, k \rangle$. So that $$X_T Y_T \cdots Z_T \neq I$$. Therefore we have $P \simeq P_T$ again. Now we prove the theorem. **Proof of theorem** Let us, for any recursive transformations S and T on N, write the recursive transformation in $\{(a,b) \mid (a=2x\&b=2y\&(x,y)\in S) \lor (a=2x+1\&b=2y+1\&(x,y)\in S) \lor (a=2x+1\&b=2y+1\&(x,y)\in T) \text{ on } N \text{ as } \binom{S}{T}$; for any FRT-representative $P=(R_1,R_2,\cdots,R_m)$ and $Q=(S_1,S_2,\cdots,S_n)$, write the FRT-representative $$\begin{pmatrix} \begin{pmatrix} R_1 \\ I \end{pmatrix}, \begin{pmatrix} R_2 \\ I \end{pmatrix}, \dots, \begin{pmatrix} R_m \\ I \end{pmatrix}, \begin{pmatrix} I \\ S_1 \end{pmatrix}, \begin{pmatrix} I \\ S_2 \end{pmatrix}, \dots, \begin{pmatrix} I \\ S_n \end{pmatrix} \end{pmatrix}$$ as P*Q. Let the FRT-representatives of G_1 and G_2 be P_1 and P_2 respectively, and let P_0 be any FRT-representative which has an unsolvable word problem (for existence of P_0 see [1]). Form FRT-representative Q: ## $Q = P_2^* P_{0a}$ Thus Q has an unsolvable word problem. For any word w of Q (which is obviously a recursive transformation on N), form FRT-representative P(w): $$P(w) = P_1^*Q_{w_*}$$ Thus, if w = I, then $Q_w \simeq \{e\}$, $P(w) \simeq P_1$ has property p. If $w \neq I$, then $P(w) \simeq P_1^*Q$ (for $Q_w \simeq Q$). Hence P_2 is isomorphic with a subgroup of P(w). By hypotheses, P(w) has not property p. Now, if the decision problem mentioned in the Theorem is solvable, the problem of deciding, for any $w \in Q$, whether or not w = I is solvable, too. Hence from the fact that Q has an unsolvable word problem, our theorem follows. ## Reference [1] Lin Yucai, Relation Word Problems.