Some Hypersurfaces with Constant Mean Curvature in a Conformally Flat Riemannian Manifold

Shui Naixiang (水乃翔) and Ouyang chongzhen (欧阳崇珍)

(Hangzhou University) (Jiangxi University)

§ 1. T. Otsuki (1) studied the minimal hypersurface V^n of a Riemannian manifold S^{n+1} of constant curvature if the number of the distinct principal normal curvatures is two and the multiplicities of them are at least two. He proved that V^n is locally the Riemannian product $S^h \times S^h$ of two Riemannian manifolds S^h and S^h of constant curvature, where l_1 and l_2 are these multiplicities, respectively. In the present paper S^m denotes an m-dimensional Riemannian manifold of constant curvature. In the paper (2) we studied the conformally flat minimal hypersurface M^n of S^{n+1} ($n \ge 4$) and showed that if the scalar curvature of M^n is constant, then either M^n is totally geodesic and, therefore, M^n is S^n , or M^n is locally a Riemannian product $S^{n-1} \times R^1$, where R^1 is a line. The paper (3) generalized this result to the conformally flat nypersurface M^n ($n \ge 4$) with constant mean curvature in S^{n+1} and proved that if the scalar curvature of M^n is constant, then either M^n is S^n , or M^n is locally a Riemannian product $S^{n-1} \times R^1$.

In the present paper we consider the hypersurface V^n with constant mean curvature in a conformally flat Riemannian manifold M^{n+1} ($n \ge 4$). We shall prove that if V^n is conformally flat and the normal direction of V^n is a Ricci principal direction of M^{n+1} , then either V^n is totally umbilical, or V^n is locally a subprojective Riemannian space $\eta^2 S^{n-1} \times R^1$, where $\eta \in C(R^1)$, if V^n is conformally flat and all the principal normal curvatures are constants, then either V^n is totally umbilical, or V^n is locally a Riemannian product $S^{n-1} \times R^1$, and if the number of distinct principal normal curvatures of V^n is two and the multiplicities of them are l_1 and l_2 respectively, and $l_1 \ge 2$, $l_2 \ge 2$, and the normal direction of V^n is a Ricci principal direction of M^{n+1} , then V^n is locally the Riemannian product $M_1^{l_1} \times M_2^{l_2}$ of two conformally flat Riemannian manifolds, moreover, when $l_1 \ge 3$ (resp. $l_2 \ge 3$), $M_1^{l_1}$ (resp. $M_1^{l_2}$) is of constant curvature. Because all the directions of S^{n+1} are Ricci principal directions, our results are generalizations of the results mentioned aboove.

§2. Let M^{n+1} be a conformally flat Riemannian manifold and M^n a conformally flat hypersurface with constant mean curvature in M^{n+1} . We assume that

^{*} Received Dec. 11, 1983

the normal direction of M^n is a Ricci principal direction of M^{n+1} . Let e_1, \dots, e_{n+1} be a local orthonormal frald field in M^{n+1} such that e_1, \dots, e_n are in the principal directions of M^n and e_{n+1} is normal to M^n . Let $\omega_1, \dots, \omega_{n+1}$ be the dual frame field. We shall make use of the following convention on the ranges of indices:

a, b, c, $d=1,\dots$, n+1, i, j, k, $l=1,\dots$, n; p, q, r, $s=1,\dots$, n-1. Then we have the following stucture equations:

$$d\omega_a = -\sum_{b} \omega_{ab} \wedge \omega_b, \tag{1}$$

$$d\omega_{ab} = -\sum_{c} \omega_{ac} \wedge \omega_{cb} + \frac{1}{2} \sum_{c \mid d} K_{abcd} \omega_{c} \wedge \omega_{d}, \qquad (2)$$

where

$$K_{abed} = \frac{1}{n-1} \left(\delta_{ae} K_{bd} - \delta_{ad} K_{be} + \delta_{bd} K_{de} - \delta_{be} K_{ad} \right) + \frac{K}{n(n-1)} \left(\delta_{ad} \delta_{be} - \delta_{ae} \delta_{bd} \right)$$
 (3)

is the curvature tensor of Mn+1, and

$$K_{ab} = \sum_{e} K_{abed}, K = \sum_{a} K_{aa}$$

are Ricci tensor and scalar curvature of M^{n+1} , respectively. Restricting in M^n we have

$$\omega_{R+1} = 0, \quad \omega_{R+1} i = \lambda_i \omega_i \tag{4}$$

$$d\omega_{ij} = -\sum_{i} \omega_{ik} \wedge \omega_{kj} + \frac{1}{2} \sum_{k} R_{ijkl} \omega_{k} \wedge \omega_{l}, \qquad (5)$$

$$R_{ijkl} = \lambda_i \lambda_j (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}) + K_{ijkl}, \tag{6}$$

where R_{ifkl} is the curvature tensor of M^n , and λ_i the principal normal curvature in the direction of e_i . Let h_{ij} be the components of the second fundamental form. Then we have

$$h_{ij} = \lambda_i \delta_{ij} \tag{7}$$

We define the functions h_{ijk} in M^n such that

$$\sum_{k} h_{ijk} \omega_{k} = \mathrm{d}h_{ij} - \sum_{k} |h_{kj} \omega_{ki} - \sum_{k} h_{ik} \omega_{kj} \tag{8}$$

Because the noramal direction of M^n is a Ricci principal direction of M^{n+1} , we have $K_{n+1,i} = K_{i,n+1} = 0$. Following (4) we have

$$h_{i,l_{b}} - h_{i,k_{l}} = -K_{n+1,i,l_{k}} = 0 (9)$$

Pai Chenguo [5] proved that a hypersurface M^n ($n \ge 4$) of conformally flat Riemannian manifold M^{n+1} is conformally flat if and only if there is a principal normal curvature with multiplicity not less than n-1 in each point of M^n . Hence, we have only the following two cases:

Case 1. $\lambda = \cdots = \lambda_n$, then M^n is totally umbilical.

Case 2. $\lambda_1 = \cdots = \lambda_{n-1} = \mu + \lambda_n = \nu$. Then by means of (7) and (8) we have

$$\sum_{k} h_{pqk} \omega_{k} = 0 \quad (p \neq q), \tag{10}$$

and, hence $h_{pqk}=0$, $(p \neq q)$. From (7)—(10) we obtain

$$d\mu = dh_{pp} = \sum_{k} h_{ppk} \omega_{k} = p_{ppp} \omega_{p} + h_{ppn} \omega_{n} \text{ and, therefore,}$$

$$h_{ppp} = 0, h_{ppn} = h_{qqn}, d\mu = h_{ppn} \omega_{n}$$
(11)

By means of (7) and (8), we have

$$\mathrm{d}\,\mathbf{v} = \mathrm{d}h_{nn} = \sum_{k} h_{nnk} \mathbf{\omega}_{k}.$$

By the assumption, the mean curvature $h = \frac{n-1}{n} \mu + \frac{\nu}{n} = \text{const.}$, we have

$$\sum_{k} h_{nnk} \omega_k + (n-1) h_{ppn} \omega_n = 0.$$

Hence,

$$h_{nnp} = 0, \quad h_{ppn} = -\frac{1}{n-1} h_{nnn}$$
 (12)

and

$$d v = h_{nnn} \omega_n \tag{13}$$

Thus, from (8) we have $h_{pnp}\omega_p = -v\omega_{np} - \mu\omega_{pn} = (v-\mu)\omega_{pn}$, and, therefore,

$$\omega_{pn} = \frac{1}{\nu - \mu} h_{ppn} \omega_p = \frac{h_{nnn}}{(n-1)(\mu - \nu)} \omega_{p_{\bullet}}$$
 (14)

From (13), we obtain
$$dh_{nnn} \wedge \omega_n - h_{nnn} \sum_{\rho} \omega_{n\rho} \wedge \omega_{\rho} = 0$$
, and, hence,
$$dh_{nnn} = \alpha \omega_n$$
 (15)

By means of (14), we have

$$d\omega_{pn} = \frac{1}{(n-1)(\mu-\nu)} \left\{ \left[\alpha + \frac{h_{nnn}^2}{(n-1)(\mu-\nu)} \right] \omega \wedge \omega_p - h_{nnn} \sum_{q} \omega_{pq} \wedge \omega_q \right\}$$
(16)

On the other hand, from (2), (3) and (14), we have

$$d\omega_{pn} = -\sum_{q} \frac{h_{nnn}}{(n-1)(\mu-\nu)} \omega_{pq} \wedge \omega_{q} + \left[\mu\nu + \frac{1}{n-1} \left(K_{pp} + K_{nn} - \frac{K}{n} \right) \right] \omega_{p} \wedge \omega_{1} + \frac{1}{n-1} \sum_{q} K_{nq} \omega_{p} \wedge \omega_{q} + \frac{1}{n-1} \sum_{p \neq q} K_{pq} \omega_{q} \wedge \omega_{n}.$$

$$(17)$$

Comparing (16) and (17), we get

$$K_{pq}=0 \ (p \neq q), \ K_{nq}=0, \ (q=1,\dots,n-1),$$

$$(n-1)\mu\nu + K_{pp} + K_{nn} - \frac{K}{n} = \frac{1}{(n-1)(\mu-\nu)^2} ((n-1)(\mu-\nu)\alpha + h_{nn}^2), \ (p=1,\dots,n=1),$$
(18)

and, therefore,

$$K_{11} = K_{22} = \dots = K_{n-1,n-1}. \tag{19}$$

By means of (1) and (14), we have

$$d\omega_0 = 0$$
.

Thus the Pfaffian equation $\omega_n=0$ is completely integrable. Let f be its first

integral. Restricting in the integral manifold V^{n-1} : f=c, c is any constant, we have

$$\omega_{n+1} = 0$$
, $\omega_n = 0$, $\omega_{n+1p} = \mu \omega_p$, $\omega_{np} = \frac{h_{nnn}}{(n-1)(\nu - \mu)} \omega_p$ (20)

Hence V^{n-1} is a totally umbilical hypersurface of M^n . Moreover, using (18) and (19), we have

$$d\omega_{pq} = -\sum_{q} \omega_{pq} \wedge \omega_{rq} + \left\{ \mu^2 + \frac{h_{qnn}^2}{(n-1)^2 (\mu - \nu)^2} + \frac{1}{n(n-1n^2)^2} \right\}$$

$$\times \left\{ (n+1)K - 2n(K_{nn} + K_{nm1} - n_{m1}) \right\} \omega_p \wedge \omega_q$$

and, therefore, V^{n-1} ($n \ge 4$) is of constant sectional curvature. Thus, in the loca coordinates of M^n we have

$$ds^{2} = \sigma^{2} \sum_{p} (dx^{p})^{2} + \tau^{2} (dx^{n})^{2}, \qquad (21)$$

where xg = const. is the integral manifolds of $\omega_n = 0$. Now we have

$$\omega_p = \sigma dx^p, \quad \omega_n = \tau dx^n, \tag{22}$$

and

$$d\omega_{p} = \sum_{q} \frac{1}{\sigma^{2}} \frac{\partial \sigma}{\partial x^{q}} \omega_{q} \wedge \omega_{p} + \frac{1}{\tau \sigma} \frac{\partial \sigma}{\partial x^{n}} \omega_{n} \wedge \omega_{p}. \tag{23}$$

By means of (11), (13) and (22), we have

$$\frac{\partial \mu}{\partial x^{p}} = 0, \quad \frac{\partial \nu}{\partial x_{p}} = 0, \quad \frac{\partial \mu}{\partial x^{n}} = \tau h_{ppn},$$

i. e.,

$$\mu = \mu(x^n), \quad v = v(x^n), \quad \mu' = \tau h_{ppn}.$$
 (24)

Comparing (1) with (23) we obtain

$$\omega_{pq} = \frac{1}{\sigma^2} \frac{\partial \sigma}{\partial x^q} \omega_p, \quad \omega_{pn} = \frac{1}{\tau \sigma} \frac{\partial \sigma}{\partial x^n} \omega_p. \tag{25}$$

From (25), (14) and (24), we get

$$\frac{1}{\sigma} \frac{\partial \sigma}{\partial x^n} = \frac{\mu'}{\nu - \mu},$$

and, hence,

$$\sigma = \eta(x^n) \xi(x^1, \dots, x^{n-1}). \tag{26}$$

By means of (1), (4), (14) and (22), we obtain

$$\tau = \tau(x^n). \tag{27}$$

Moreover, since all the hypersurfaces $x^n = \text{const.}$ have constant sectional curvature, (21) is reducible to the following form:

$$ds^{2} = \eta^{2}(x^{n}) - \frac{\sum_{p} (dx^{p})^{2}}{\left[1 + \frac{c}{4} \sum_{p} (x^{p})^{2}\right]^{2}} + (dx^{n})^{2},$$

where c is constant, This shows that M^n is locally a subprojective Riemannian space $\eta^n s^{n-1} \times R^1$, $\eta \in C(R^1)$. Hence we have the following

Theorem 1. Let M^1 $(n \ge 4)$ be a conformally flat hypersurface with constant mean curvature in a conformally flat Riemannian manifold $M^{n \le 1}$. Assume that the normal direction of M^n is a Ricci principal direction of $M^{n \le 1}$. Then either M^n is totally umbilical, or M^n is locally a subprojective Riemannian space $\eta^2 S^{n \le 1} \times R^1$, where $\eta \in C(R^1)$ and R^1 is a line.

If all the principal normal curvatures are constants, there is $\eta(x^n) = \text{const.}$ in (28), and therefore, M^n is locally the Riemannian product $S^{n-1} \times R^1$. Moreover, by an argument analogous to get the theorem 1, we can get the following

Theorem 2. Let M^n ($\geqslant 4$) be a conformally flat hypersurface with constant principal normal curvatures in a conformally flat Riemannian manifold M^{n+1} . Then either M^n is totally unbilical, or M^n is locally the Riemannian product $S^{n-1} \times R^1$.

When M^{nmi} is a Riemannian manifold of constant curvature the theorem 2 implies the result of (3) mentioned above.

§3. Let V^n be a hypersurface with constant mean curvature in a conformally falt Riemannian manifold M^{n+1} . Assume that the normal direction of distinct principal curvatures of V^n is two. If the multiplicity of one principal curvature is n-1, V^n is conformally flat (5). We try to consider the following case:

 $\lambda_1 = \cdots = \lambda_{l_1} = \mu_1, \quad \lambda_{l_1} = \cdots = \lambda_{l_1 + l_2} = \mu_2 + \mu_1, \quad l_1, \quad l_2 \ge 2, \quad l_1 + l_2 = n_0$ By an argument analogous to get (10) and (11), we have now

$$h_{p_{a}q_{ai}} = 0, h_{p_{a}p_{a}p_{a}} = 0, h_{p_{a}p_{a}p_{\beta}} = h_{q_{a}q_{a}q_{\beta}},$$

$$d\mu_{a} = \sum_{p_{a}} h_{p_{a}p_{a}p_{\beta}} \omega_{p_{\beta}}, \begin{pmatrix} \alpha, \beta = 1, 2; & \alpha \neq \beta, & p_{a} \neq q_{a}, & p_{\beta} \neq q_{\beta}, \\ p_{1}, q_{1} = 1, \dots, l_{1}; & p_{2}, q_{2} = l_{1} + 1, \dots, n \end{pmatrix}$$
(30)

From (9) and (30) we obtain

$$\mu_1 = \text{const.}, \quad \mu_2 = \text{const.}, \tag{31}$$

and, therefore,

$$h_{ijk}=0. (32)$$

By means of (8), (9), (29) and (32), we obtain

$$\omega_{p_1 p_2} = 0 \tag{33}$$

Thus, the system of Pfaffian equations $\omega_{p_1}=0$ $(p_1=1,\cdots,l_1)$ is completely integrable. Let f_1,\cdots,f_{l_1} be its independent first integrals. Similarly, the system of Pfaffian equations $\omega_{p_1}=0$ $(p_2=l_1+1,\cdots,n)$ is completely integrable. Let $f_{l_1+1},\cdots f_n$ be itsindependent first integrals. It is easily seen that f_1,\cdots,f_n are n independent functions and all ithe integral manifolds $V_1^{l_1}$, $f_{p_2}=$ const. $(p_2=l_1+1,\cdots,n)$ and

 V_2l : $f_{p_1} = \text{const.}$ $(p_1 = 1, \dots, l_1)$ are totally geodesic in V^n and, therefore, are conformally flat (see $\{6\}$). Moreover we have

$$K_{ij}=0$$
, $(i \neq j)$, $K_{p_{\bullet}p_{\bullet}}=K_{\bullet}$, $\mu_{1}\mu_{2}=\frac{K}{n}-K_{1}-K_{2}$. (34)

Restricting in V_a ($\alpha = 1,2$), we have

$$d\omega_{p_{a}q_{a}} = -\sum_{r_{a}} \omega_{p_{a}r_{a}} \wedge \omega_{r_{a}q_{a}} + \frac{1}{n-1} \left\{ 2K_{a} = \frac{K}{n} + (n-1)\mu_{a}^{2} \right\} \omega_{p_{a}} \wedge \omega_{q_{a}}$$
(35)

Hence, when $l_a \ge 3$, $V_a l_b$ is of constant curvature, Thus we have the following Theorem 3. Let V^a $(n \ge 4)$ be a hypersurface with constant mean curvature in a conformally flat. Riemannian manifold M^{n+1} . Assume that the normal direction of V^a is a Ricci principal direction of M^{n+1} . If the multiplicities of the principal normal curvatures of V^n are l_1 and l_2 , $(l_1+l_2=n, l_1, l_2 \ge 2)$, respectively, then V^n is locally the Riemannian product $M_1 l_1 \times M_2 l_2$ of two confrmally flat manifolds. Moreover, when $l_1 \ge 3$, (resp. $l_2 \ge 3$), $M_1 l_1$ (resp. $M_2 l_2$) is of constant curvature.

If M^{n+1} is also locally symmetric, we have K = const., and consequently by mean of (20) and (34) we see that if one of K_1 and K_2 is constant, so is another. Thus if $n \ge 5$, then one of l_1 and l_2 is not less than 3 and, therefore, both K_1 and K_2 are constants. Hence we have the following result which is a generalizar ion of the result of [1] mentioned above.

Corollary. Let V^n ($n \ge 5$) be a hypersurface with constant mean curvature in a locally symmetric and conformally flat Riemannian [manifold M^{n+1} . Assume that the normal direction of V^n is a Ricci principal direction of M^{n+1} . If the multiplicities of the principal normal curvatures of V^n are l_1 and l_2 , $(l_1 + l_2 = n; l_1, l_2 \ge 2)$, respectively, then V^n is locally the Riemannian product $S_1 l_1 \times S_2 l_2$ of two Riemannian manifold of constant curvature.

References

- (1) Otsuki T., Amer. J. Math., 92 (1970), 145-173.
- (2) Ouyang Chongzhen and Shui Naixiang, Conformally [flat minimal hypersurfaces of a Riemannian manifold of constant curvature, J. Math. (PRC), 4(1984),327-332.
- (3) Ouyang Chongzhen, J. Jiangxi Univ., Vol. 7(1983), No. 4. 41-46.
- (4) Chern S. S., do Carmo M., Kobayashi S., Shiing-shen Chern Selcted Papers, 1978, 393-409.
- (5) Pai Chen-goo, J. Hangzhow Univ., Vol. 3 (1966), No. 1, 29-33.
- (6) Amer K., Pujan S. S., Tensor, N. S., 32 (1978), 62-64.