Linear Oprator Between D[a,b]and A Banach Space E*

Lin. Tiefu

(Harbin Institute of Technology)

Let g(t) denote an element of D(a,b) which is the space of all functions having discontinuities of the first kind.

Theorem I. Every linear continuous oprator T from E to D(a,b) may be expressed by an abstract functionft Whose Values lie in E* and Which is Weakly quasicontinuous, and $||T|| = \sup_{i \in (a,b)} ||f_i||$.

Theorem 2. Every linear completely continuous oprator T from E to D(a, b) may be expressed by an abstract function ft Whose Values lie in E^* and Which is strongly quasicontinuous, and $||T|| = \sup_{t \in [a,b]} ||f_t||$.

Theorem 3. Every linear Continuous oprator T from D(a, b) to E may be expressed in the form

$$T(g) = \int_{b}^{a} g(t) df_{t} + \sum_{\substack{i=0 \ b_{i} > a}}^{\infty} g(b_{i} - 0) (\psi_{b_{i}} - \psi_{b_{i} - 0}) + \sum_{\substack{i=0 \ b_{i} < b}}^{\infty} g(b_{i} + 0) (\psi_{b_{i} + 0} - \psi_{b_{i}})$$

$$+ \sum_{\substack{i=0 \ c_{i} = 0}}^{\infty} [g(c_{i}) - g(c_{i} - 0)] \phi_{c_{i}},$$

Where $\{c_i\}$ denote the points of discontinuity of g(t), ft, ψ_i and ϕ_i depended only on T and are such that $f_i + \psi_i \in V_E(a,b)$ which is the space of all functions with bounded variation in E, $f_i \in VC_E(a,b)$ which is the space of all continuous functions in $V_E(a,b)$, ψ_i whose points of discontinuity is $\{b_i\}$ is the jump function of $f_i + \psi_i$ and ϕ_i vanishes except at a denumerable set of points and the sum of the absolute values of $\phi(x)$ at these points is finite.

^{*} Received May 28, 1985.