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Abstract

Let (4,, X\), *, (4,,X,), (8,X) be iid random vectors,wherefe{0,1},
Xe¢R?, Denote by g, the nearest neighbour discriminator of 8 based on the
training samples (4,,X,), =, (4, X,) and the observed X; put

A , g’ see, gn
RE2ECP(0=0 X)PB=1|X)) and L=Pd, 06| )

Xy X,
a sufficient and necessary condition for L,,—’;R as n—oo, namely (P(8=0, X=
x)-P®=1, X=x)) *P0=0, X=x)-P(0=1, X=x)= 0 for every x¢R?, This
generalizes a previous result of the authors (5] and improves a result of
. Wagner, T.J. (2].

. This paper gives

§ | Introduction and Result

Let (6,,X,),, I, X,), (§,X) be iid random vectors, where 6¢® £

{0,1}, Xea, & is a Borel set in R?, Let the distribution of (¢,X) be
defined as ‘ )

' P(g=i)2n, , i=0, 1 ) 1
P(dX 6=i)=f,(x)u(dx), xeq,i=0, 1
where 4 is a o0-finte measure in (g, ¢, with support &, where 4, is the
o-field of all Borel subsets of & , The marginal distribution of X can be
written as

0 (dx) = Unofo(x) +nufy (2D Ju(dx) =f(x) u (dx) | (2)

Without loss of generality , in the sequel we shall assume f(x)> 0 for
every xeq. The conditional distribution of 8 given x is

mGO=P@=i| X=x) =7z%-nifi<x>, i=0, 1,

If the distribution Q possesses atoms, denote the set of these ajoms by
A
o VL {ay,a5,00) . Put g P=g -V, and
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q,(X)iP(X=xl0=i),i=0, 1, xea , (3)
q(X) &P (X =x) = noo(x) +midy (X),  xeq. (4)
Notice that ¢ (x) =g,(x) =¢,(x) =0 for xeg'?’,
Suppose that we have at our disposal the training samples (¢,,X,),
i=1,+, n with given X, the problem is to determine the value 4 associ-
ated with X. Let || be the usual Euclidean norm, or | x ||=ma)<<d| b, |, where

1<i
x =(b,, *, by’ . The NN-Pattern discrimination is as follows; Denote

k= min (J; | X~ X |= f‘g.lln" X -Xx|,

and use 4, as a discrimination value of ¢ associated with X . In the sequ-
el we shall write 0:,=A-—0,," , Xi,-é—X,‘n . The performance of the discrimination
can be measured by the error probabilities in various sense, such as

REPG,%6), T, 2P (6,56 Xy, =, X,) , (5)
0 .0e 0
Lné dni 1 * Yn (6)
f( 4 Xl! "'1 Xn )

A fundamental problem in large sample theory of NN-pattern discrimination
is to study the convergence of R,,7,, L,. . Devroye [ 1) proved that

lim R,=2E (o (X) n, (X)J4R (7)

regardless of the distribution of (X, ). Wagner, T.J. (2), Chen and
Kong (5] discussed the convergence of L,, T, under the assumptions
that Q is absolutly continuous with respect to the Lebesgue measure, or
that Q is a purely atomic distribution. This paper is devoted to the study
of the convergence of L,, T, under general distribution (1). Our main
result is the following .

Theorem |. Under the distribution (1) of (4,X), a sufficient and
necessary condition for L,,—P>R as n—»oo is

(oo (X) = 1719, (X)) *npedo (x) mgy (x) =0, for every xeq (8)
or,equivalently , ’

(oo (a - n,q, (ak))zlfoqo(ak)’hql (ay)=0, k=1, 2, e, 8"

When &« ‘!’=4, then (8) is true. Hence it follows from Theorem 1

that
Corollary | . If the distribution Q of X is nonatomic, then L,,—’;R as

n—+oo .

This corollary gets rid of all supplementary conditions jmposed on the
“distribution of X, thus improves the result in {273 .

When 4 ‘%’ =p, from Lemma 4 we have

— 96 —
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Corollary 2. If the distribution of X is purely atomic, we have
{L,~R (a.s.) as n>oo} & @8 .

This corollary becomes Theorem 2 in [ 5] when X is a purely discrete
random variable ,

§ 2 Proof of the Theorem

First we give the notations to be used in the sequel. For Xy, v, X

n

where x,eq, i=1,+, n, write

A L .
V,={x: xeq, j=min (. | x_,~x||=?21n<l| x,~x P} (9)

V=V, N @ ‘ (10)

for j=1, s, n, i=1, 2.

o . 0 . °%%, gn .

LY&P( 6,50, Xex f”l )} . ) 1
19 % n
TOZP (0,506, Xeqw V| X,y e, X,) (12)
R P22E (ng(X) 1, (X) Iy > (X)) (13)
for i=1, 2.

Lemma 1. R=RP+R®, L=LY+L,®, T,=T,V+T,?, (14)
L= 8] mleou@o+a-6)  mhoudo] , (15)

nj nj

T,,(")= 21:1[ ﬂl(xj)J‘v (_;)qofo(X)/l (dx) +n, (x].?[v (',»)’hfn(x)u (dx)j , (16)
A (17
2 Aq,(i)ﬂl(x)ﬂo(x)f(x)u(dx) , )

for i=1, 2.
Proof. By the definition of NN-Paitern discrimination, we have

L=y ;'21{ P[ XeV,, 6,=1,6=0] +P XV, 6,=0, 6=1)}

= 2;:1.[ 91{ V”m,fo(x)u dx) + (1- 6’j)fvnj”‘f‘(x)y(dx)j 3

from this expression and (10) ~(12) , (15) and (16) follow; (14) and
(17) hdd obviously. Lemma 1 is proved . '
For definiteness , we shall assume that 4 I’ is a countable infinite set,
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if o is a finite or empty set, the argument will be much simpler . For

every integer k>0, denote
B,={(x;, X3, ) x,3a,, x;e¥, i=1,2, +}

A= { G150y, ) gig@ , i=1, 2, ..}
k Xiy Xgyvee : (xl’xz’on) (Bk

* =5 * _ =)
and B —Uk:IBk’ A —Uk:IAk .

For (x,,X,,+) ¢ BY, let

Ji=min{j; x;=a,}, k=1, 2, (18)

Lemma 2. P((X,X,, =)eB")=0 (19)
0,,0,,

P(CT" YeA*) =0 (20)

X] 7X29"'

and for every (x,,x,,+) ¢B*, we have

1° k>ocoojiroo; Ik®),Xjis

2° If n>j,, then a,eV,;’, and when j>j,, x,=a,, then V P =g,

njk 9
3° When n—oo, -V, | {a) for every k=1, 2, «.

Proof. Since a, (k=1, 2,+) are atoms of X, by Fubini’s Theorem,
(19) and (20) follow easily, The conclusions 1°, 2° hold obviously. In
order to prove 3°, note that V, | as n—soo, Write lim V)=V, @, For

"jk n—oo
D D W W i
every axa, we have aeV,", a4V, VP NV =4 as n>max{j, j,)

from 2°, hence g V", a,eV, . Since V(D N g @ =4, therefore, we
have V% ={q,} . Lemma 2 is proved .
Oy585s

X1y Xgy oo

'l'im L,,(l) = 2 :il[ nodo (@) ~ Mq, (ak)j 0.t M Z

- 00

Lemma 3. For every ( ¢ A*, we have

h 141 (a,) (21)

Proof. From (15) in Lemma ], it follows that

W - " IR =
L, —’702 j:1[ 01’2 . vn(ll)qo(at)] ngl[ 0j(z,2€V,,(jl)(Il (a,-)] i :;.1 q; (ap

JAN 4 oo
=nol on— 1 11n+'712k_:11(ak)' (22)
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Put I,= ZOO g:(ab,;,, i=0, 1. In order to prove (21) , it is enough to
k=1

show that liml,,=1, for i=0, 1. For example when i=0, for £>( there exists
n—*o0

N such that ZZON go(2,)<e. From 2° of Lemma 2, when n>n,,
=N+1

A .. .
=max{/19./2""9 ./N} , We have

N ) N
b LLD, e ] Do |
+l L. 2:~1EZ v(l)qo(ai)gj" ' +kz;v+1q0(ak)0iké‘,ln+ Tt Isn s (23)
= A€ Vs =

where J3,,<2°° go(a,)<e. From 3° of Lemma 2 there exists n, >n, such
k=N+1
that J,,<¢ as n>n,. Write

W, 20 VP%g, 1<i<n} ,
then from 2° of Lemma 2 we have

J2"<Z )E 2“\,(1)‘10(“’)]

JEW = {j, = Jn

o0 N
< Zkzlqo(ak) - Z:k=l[ Z

qo(a; ) j

1
a,.eV”k

< ZZO:Nqu(ak)<€ ’

as n>n,, Therefore Lemma 3 is proved .

Lemma 4. (LR (a.s.)asn>oo}e (8)) (24)
Proof. By 17, Rm:ZZoo ”0’71(1;22";%(0") , hence from Lemma 3
k= k

we have that {LV=R® (a.s.)asn>oo} @57 [(nogo(ad —ma (a0 ] 6,
k=1

:R(l)—ﬂlz: G lay), a.s. (25)
=1

It is easy to prove that if (8') holds then RW=n Y™ g (a,), therefore
k=1

(25) follows . On the other hand, if (25) is true, then, since the right
hand side of (25) is a comstant, by computing the variances of two sides
of (25) under X, =a,, k=1,2,+, it follows that

5 {1620 (@) = 1,91€a,)) *nodo (@ m a, @) /a*(a)] = 0 =) .
k=1

Therefore Lemma 4 is proved ,
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We turn to discuss L, now .

Lemma 5. Let p(x) be a Borel measurable function on 4 ,| ¢ (x) |<M
<oo. Then there exists a set Aed, such that Q(A)= 0 and for every
xé A we have ‘

o (X, NEBe ) as  noo,

where X, (x) is the nearest neighbouring point of x in X,, e, X, .

Proof. Denote by X, (x) the second nearest neighbouring point of x in
X,, ==, X,, then for every xeq,

X/ (x)>x (a.s.) as n—»oo, (26)

Since ¢ is a bounded function , there exists a set A ¢ #, such that Q(A)=0

and

fs | @ () = @(x) |Qdy) :
. =0 for J;‘EA , 27)

lim

0 Q(@S, )
by Theorem 2,9.8 of [6), where
Sy, = (s ved, | x -y [<p) .

Denote by G, (dp) the distribution of | X!(x)- x|, then if xcA, we have

E( 9(X,(x)~9(x)|J=E{El| (X, (X)) -9 (x) ||‘|| X, ()= x )}
p (V)—9 () QWdy)
:Uﬂ"+f®] stLJ’ !
0 o Q(Sx,p)

For arbitrarily given ¢>0, from (27) it follows that there exists p,>0
such that I,<{e. On the other hand, '

le () —@(x)] Q(dy)

o6, Mo

Gmx(dp) 'Z'A:Il + 12‘

S

K (x, p)2sup
po<p

Hence, by (26) .
I,<MP(| X)(x¥)~x|>p]J>0 as n>oo.
Since ¢> 0 is arbitrary,v the proof of Lemma 5 is concluded .

Lemma 6. T, 2LRr® as n—oco, (28)
Proof. From (16) of Lemma 1, we have

=3 €D I ACVICIR ijlﬂo(xj)f v @M N1OuED ST+ T
nj nj

Y

R @= zfa[ M (X o fo(x) u(dx) .

— 100 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Hence, in order to prove (28) , it is enough to prove T,f,z’—’i—;—R @ 45 n—oco,

Because 0<(y,(x)<1, from Lemma 5 there exists a set Ae%, such that
Q (Ay=0, and for xcA, we have n,(Xf,(x))ﬂm(x) as n—-oco, Note that for
xed- P-A,

Z" Fl(xl)IV,(,Z) (x)=’71(X:,(x))£m(X) as  n—>co.
~ -

Then by the dominated convergence theorem and Fubini’s theorem, we have

E( EEI Tl(nZ)_%R(z)DzE{, for(Z)(’h(X»/n(x))_'h (X)) mg fo(x) u(dx) l}
<E{Jg @l m (X (x))=nofo(x) u(dx)}

= fa[(Z)_AE[l M (Xn(x)) =1, (x) |Inefo(x)u(dx)

—( as n—»oco,

It can be shown in the same way that E{] Tsz’—-;—R @3>0 as n—> oo,

and the proof of Lemma 6 is completed .

Corollary 3. T,%R as  n—>oco.

Proof. This corollary follows. from the fact that the proof of Lemma
6 is still valid when g ® is replaced by « .

Lemma 7. Let G be a finite measure without atom on (R“,g"), then
we have

l,irrpoa {r:y-x|<p, yeRY=0 (29
uniformly for xeR?.

Proof. Obviously it is enough to prove (29) for the case | x||=lr2a<xd] b |
(x= (by,*s+, b;)' ). For arbitrarily given ¢>0, there exists M> 0 such that
0 (Af) <e, where Aué{y, | ¥ <M, »R% . For every k(=1,2,3,+) , wWe
split A,, into 2% equal “cuboids ” A,,, i=1,2,-, 2% with marginal length

—l—M such that for every k we have that

2
AM:lJI?;'IAkI . Ak,‘ﬂAki-—-’qﬁ (x))

and for every (k,k ,i,j) we have

AuNAY; =0 or A,CAy; (k' <k).
Then there exists k, such that
Q(Ak’i) <&y i=1,2,000, 257 (30)
— 101 —
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For , if on the contrary (30) is not true , there will exist a set-sequence
{Aki,, k=1,2,+} such that

O(Aup>t, k=1,2,. (3D

By finiteness of a, there exists only a finite number of sets in {A,, , k=1,2,
-} such that they do not intersect with each other , hence _there exists
k, such that
Aig DB+ DA G+ DDA FDH gy
Denote Aozl,(iPwAkik’ then A,=¢ or {x,} for some xgR?, and we have
lkiir;'é(Aki‘) =0 since @ has no atom, This is contrary to (31) Hence (30)

holds. Denote AkooéAf,. Then for every x¢R?, there cexist N(d) Sets in

{Agis 1=0,1,00, 29,0y such that they cover {y:] y=—x|<pe» »R?}, where
poz—,}:—M , N(d) depends only on d . From (30) we have
2 o

Q{y:]| - x[<po, ¥R} <N(d)e .

Hence (29) follows by arbitrariness of ¢.
Lemma 8. L,*-T,”B0 a5 n—>oo (32)
Proof. From Lemma 1,

L®=y" l%jv(z)”ofo(x)u(dx) + 3

A
=0 | @i udx) SLPLP.

Notations T,?, i=1,2, were defined in Lemma 6. Therefore in order to
P

prove (32) , it is enough to prove L, ®-T, P50 as n—o>oo, i=1,2.
Let K be a compact set in R?, and
r& su inf | X,-x
xeK%OI(Z){{1<i<nH mx
then it can be shown that
r, —o (a.s.) as n-—»oo (33

by the same method of ([2) . Note that g ¥ contains no atom of Q. By
Lemma 7 we have

; @ — .
l,fin(,Q[ s ﬂSx, p] =0 (34)
uniformly for xeq ‘¥, By (34) , (33) it can be shown that

A
I‘,,—lrge}énfvn(jz) f(x)u(dx) 0 ‘(a.s.) @ Hn—>oco

—102 —
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by the same method of [23 . Note that when (x;,+, x,) is given,
Q,-E(6)x;), j=1,+, n are conditionally independent. Hence we have

E{ELl(nZ)_TISIZ))Z I xl s °%% xn }

=E{C L7 0,- EGp x| oymefeOu @]z, x,)
J= nj

= 1" {ECCO-ECo] ) 2] (o, mfot0utdn)?)
nj

Kij<n

<maxf 2/ O u(x)>0 as  n>oco.
vy
Therefore, by the dominated convergence theorem we have

E(LI(Z)—TI(f))Z:E{E[.(Ll(nZ)— TlS-Z))zi Xy ooy X)) >0 as npooco.

This provesthatL‘(,,Z)—Tlf,z’f»O as n—>oco, Similarily it can be shown that

LZ(Z)—TZE,“f»O as n—>oco, Lemma 8 is proved .

n

¢
Now it is easy to complete the proof of Theorem |,

Proof of Theorem |. Denote

2 :o_ltﬂoqo(ak)_ﬂﬂx (ak):'ajk+’71 Z :oqu(ak)"'R(z)

G, .0, o 6 o~
a( L) - | a( o) e
R as( ilaih"‘) GA* ,
19 X2y *°°

where A*, jx were defined in Lemma 1,2. Employing the Lemmas given

above, we can easily see
L"=Ln(1)+L,,(2)f>A as n—>oco,
An argument similar to those wused in the proof of Lemma 4 shows that
A=RD+R® =R & (8)
which ends the proof of Theorem 1|,
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