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Let (X, Y) be a R*xR'- value? rondom vector with E(|Y |« ou, w0

)

=E(Y |X=x) be the regression funciion of Y with respect to ¥ . Suppose tha:

(X, ¥Y,), i= 1, =, 7, are iid. samples drawn from (¥, ¥ 18
estimate m(x) based on these sampies. Deveroye discussed in 0

&

the pointwise L,— convergence of the nearest neighbor cstimais m, (%) (see (5)
of the present paper). Ih this article we further study the rate of this con.oe-
gence. it is shown that if there exists p>> 2 such that ElY ["<co, then

Edm, o -m{x) |P=00n

Yoo 5. for zuitable choice o the

{ paper).

. tatroduction and the woain rssuit
In order to estimate m(x ), we inireduce a maotric [x -y iokn R4, and
arrange | X, - x || in increasing crdier, i. e.
V=0 1 |y = 5 o [ x|
(ties are breaken by comparing indices), Two common choice of [x- v | are

as follows
, o
=y lP= 3 <xi=w? (25

r=yi= max_ |x-y1, 230

The resuli of this naper is valid for be

th specificaiions,

7

. Now choose a probability weighy vector (T, i= 1, «v, nj (.o, Oyt

I};IC,,,-: 1}),and define

Wan(x>’:(~~ i “‘ﬂ AT n o {A)

< i faa s

The estimator of m(x ) which will be ndied in ihe fellowing ia
” .
m,(X)= Y W, (x5, (5)

ighbor estimate” . Since the appearance:

ot §

this estimate is often calied “nearesi
of the foundational work (1) of Stone (1977, further progress have heen
* Received Jan. 31, 1983.
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made in the research of this direction, Devroye (23 (1981) conisdered the point-
wise consistency of this estimate, in this paper we shall conside the convergence
rates of it.

Let k=k, be a natural number depend solely on n. Suppose that the weight

vector {C,;} satisfies

. ____1___
(”) S};lp { k"lgliaékjc"’} <eo, Cnizo(n d+2 1)9 izkn+ 1, ey 0o (7))

An obvious choice satisfying these conditions is k,= [nZ/(‘i+ 2 J, C,,,.=—kl— for

2%
(1 ){ (i) there exist constants ¢,> ¢ and c,<oo, such that ¢, <lk,n 4+2 <c,, (6)

i=1, * k,and = 0for i=k,+ 1, s, n, ‘

Denote by u4 the probability distribution of X, then the main result of
this paper can be formulated in the following

Theorem If (i) E|Y |*<co for some p>2 .

(ii) m(x) satisfies the Lipschitz condition of order 1,

(iii) {C,} satisfies condition (1) ,
then ,

E|m,(x)-m(x)|?P=0(n d+2 ) a.s.x(u) (8)

2. Proof of the theorem.

We prove first some lemmas . In the following, ¢,, cand c, denote positive
constants, M (x) , M, (x) and M (x) denote constant depending upon x,
(these constants can assume different values in each of their appearance, even
within the same expression). S,denote the open sphere of radius p centered at
X .

Lemma | . Let h,,=n—d—+%—a,,, where {a,} is positive sequence of real num-

ber such that
1

nma,=co ,  limh,=lima,-n 32 =0, 9)
then J
Jimnad 2 4(S, =0, a.s.x(u) (10)

Proof From the proof of Lemma 2,2 of [2], we know that the Lebesgue
measure 1 on R? can be split up into two parts 1,, A,, such that /=1, +1, ,

M, '12_J._/49 and
d

. ACS,) . Mh,

1 = = = X -

Li’&)‘(shn) l‘l%(shn) g(x) ,a.s.x), an
where M is a positive constant and g(x)zg—il_(x) is a nonnegative finite
function.

By (i1) we have Y
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- .
d+ d
nt? oh d

he a;, ' _8(x)

n =—d = g (x), a.s.x(u), (nh—>0)
u(S;) 2 u (S, ) nﬁ;u(sh) MM

since g <g, (x)<oco and Lig}_gf:oo, we have
d
}ligona’zu(sh,,)=oo, a.s.x(u) .

Lemma2 . If (i) E[f(X)[|'<eo, p>1,
(ii ) f(x) satisfies the Lipschitz condition of order 1,
(i) {W, (x)) satisfies condition (]) ,

then

. P
Etfj W (x) | f(X)=f(x)|[P)=0(n 352 . a®), a.s.x(u), 12)
i=1

where {a,} satisfies (9 ) .

k
Proof T2ECY. W, (x) | /(X) - f(x) 1= EQ" Co |/ (Ka) = £Cx) P2+

i=1 i1
+E( i: Cu lf(XRi) - f(x)|N&l, + 1,. (13)
i+k + 1

We consider I, first, Since

4
C,,,-<C-n_(2+2'+1><cn-3—-—+”2. '-l—lk s P=ky+ 1, o=, n,
we get
_ 4 1 n ~ __ P
[i<ew T8 B ), &) = SO [PSe.n T 2EU) (14)
n ji= + 1 R
EUs | |Xg, = xD=] .- [ fCry = FCO PPudyy u(Siy o
- I Xg, - x| Rk,

Ry

where S, | denote the set RI-Sy .
Write G(p) = u(S,), then the distribution of HXRk—x I is

n-1 -
LG ) (G {1 ~G(p)IdG(p) (s

Put 4= f [fCY) = fCx) |Pu(dy) , then A<2”'(E|f(X) "+ |f(x) | )EM,(x),
Therefore

Al oo
EU=E { ECG| [Xg - x )} < An ( ]':_ D OT_—'G_I(T)—[G(P)J"" :

(1 -G(p)) ™ dG(p)= An ( no )j lx"“'(l - x)"*dx=4an ( n- 1 ) Bk, n—k)
k-1 0 k-1 >
_ n-1 k- 1)t (n-k=-131 _ ,, _ n
_An(k_l) (n—l)! =A n-k° (16>
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. . n
Since lim -= 1, we have
wem- ko

E(J)<247 2 My(x)
for nlarge enough. By (14) , we get

14 P

I, <lesMy(xyn d527=0(n 4+2) a7
Next consider 7, By (7), we have C,<c/k,, i=1, 2, <=, k,. Hence

IRy L | f(Xg >—f<x)|j~c-E<7:,> :

}’(O[NYI,I( x )= fu 1 “if(J")—f(x)|’u(dy)//4(S”XRk_x”)
Roen "
s fUxy seviiose he Lipschitz condition of order 1, i.e. , |[f(x)- f() |
< fgxe i, (wizie L is a constant;, we have
FOp e id e s x Diels 27 (STOO [SGO D - PAK, - - x =R
Lk ‘ (18)
vrre o cdes ‘f¢ POy Pudd )/ uiS) 3. By (3] (page 188) we get
Gl yero, ars - x(p ) (19)
We get (18) by means of
Jri I.f(J’)"f(X)Vu(dy)/u(S”X ”)<2"‘(f(x)+ [ fex)y i9).
RESEEY Ris 1

Let £, be the number of X, X,, X, falling into Sh, then Z, obeys the
binomial distibution, i, e., Z,~B(n, 1), t,=u(S, >0, If ||XRk X I=>h
n . s
the 7 <k,

1
From icinma ] we obtain, for h,=n 9¥1+ 4, and n large enough

Tt u(s, ) i,
Th:
.
1 N ERE Zz,
FHS, )2 > (20)

Therefore by Hoefldmg s inequality (see (4 ]), we get
k, -
?}\C- n”’ (21

| et Zao 5
P( "XRk . ]‘ o & ) <, ¥ ( 5 I, {/’“‘z“t,,)<2 exp{

for n iarge enough. Where v may be any positive real number,

Take = .—,Efi.——, bv (18) and (21>, we get
I _k
EJ, ‘,:;;’h:+M:(‘-f)t? d+Z<All(x)on d+2.a'l:

when n is large enough, Then
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__ P P
L<e. M (x) 0 757 +al=00n T+ 7uar), a,

By (22) . (17) and (13) , we get

s.xCud ., 2>

I:O(n_d_f—z-aﬁ) y a.s.xCu),

Lemma 3 Let {X } be a r.». sequence such that for any coasiani szqu-
ence with limc,= 0, we have limsup |c,X,|<o0, a,s.., Then

limsup | X, [<oo, a.s. . (23)

Proof See (5.

Proof of the theorem By Minkowski's inequality

L 1 n
S{E |m, (x)=m(x) )7 EIZ_lCn.EY mXI VT (B Y, Cully,

1 1 1
- m(X )] 717+ (E | Z Cylm(Xg )= m(x)] |7} 7=g +JP+J" (247
i=1
Since {C,,l.} satisfies condition (1) , by lemma 2 we get
P __
J3=0(n—d+2-a,f) s a.s.x(pu) . {25y

Now consider J,. write
& = Coy, 1< i<k, ,
" 0, k+1<i<n,
It is obvious that }: C’,,,gl Write Z,=Y,-m(X)), 4,= (X;, *=, X,),
i
h(X)=E(|Z, |P|A)_E( |Z,|?1X,), then Er(X))=E |Z,|’<2?E |Y |’< o0, Since

-

ﬁ’nRj(x)QC"i , i =1,2, e, 0,

Z,, Z,, *, Z,are iid and EZ = 0, by Marcinkiwicz’s inequality"*’, we get

(1 Cullg-meX )]I”|A}-E{|ZIW,,.(X)[Y m(X)3 | |a,)
i =1 i=

" A 2 "
<G, E(UY WL (x)ZIT|8,)<Cy o max (W, ()} 2 EC Y W, x|z, |

i=1 R

P n _P ok .
A} = v 2C 2 w(XIR(X))=C ok, 7 (CuhCX >3 (26)
-2 1 k, _r 1 k
J,<C, k% E; Z h(X ) +k, T+ B(EG- 2 h(XR') | ||XR‘_h+ - 1},
Q73
E(p Y h D, mxb= [ RCPOu@/uSyx  _ P<hT G,
mist far Six, —xl| Ree1 ' (og)
where h*(x)—su;g[f lh(y) |/4(dy)//4(S)j Similarily to (19) we ocbrain
0<h* (x)<°<> a.s.x(u) . 29
Consequently,
» _P -
J<KC,ok, Zen*(x)=M,(x)on 94¥2=0(n 4*2) , a.s.xCu) 30)
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For the J, part, write
ci={ 1< i<k,
“\Cpy ket 1< i<
We have Z Cr< 1. Introuduce Z,, A, and h(X,) as earlier, By an argument
i=1

War(x)=Crh , i=1, 2, =, n,

ni 9

similar to those leading to (26), we get

n ) n
E{ | L whZ P|a, }<C,on T Y wh (AKX
i=1 i=1
Ther efore

_r n -2 n
J,<c,on d+2 E{ 2 W:i(x)h(Xi}: c,en dfz -E{ ) C,.'.-h(XR.)}
i=1 i=k,+1 !

__»r n P ’
<c,on T E{ L L hK)}Be, o T L E(Q) @31
L = a1 !

Similarily to the proof of (16) , we write

A= [h(youdn=E|Z |, -
then A4, < 2°E|Y |*<co. Let G(p )>=p(Sy. Then the distribution of ”XRk—x i
is (15) . Therefore,

n nA
B E{ EGlm N MR I, - x D}

n

Thus, when n is large enough, we have
E(Q)< 2 A, c (oo,

hence
P P

J,<cen d¥Z=0(n 4+2) (32)

By (25). (30) and (32), we get for n large enough
P

i 1 1 .
E|M,(x)-m(x) [<UF+IP+IP)<c,(J, +J,+I)<M(x)+n d*2a?,
This can be written as
J .
limsup {a,?n?*2E |m,(x)-m(x) |[?|<eo  a.s. | (33)

Here {a,} can be chosen as any constant sequence tending to oo, evidently
this is equivalent to say that {a "} can be chosen as any constant sequence

tending to zero . Hence by Lemma 3 we finally get

__F
E|lm (x)-m(x)|?P=0(n 4*2). a.s.x(u),
which ends the proof of The Theorem,
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