A Note on First Order Differential Equation*

Zdravko F. Starc

(Zarka Zrenjanina 93, 26300 Vrsac, Yugoslavia)

Li Hongxiang (李鸿祥)

(Shanghai Institute of Railway Technology)

In this note, a theorem and its three corollaries on solution of the first order ordinary differential equation are given.

Theorem Suppose that b, $F \in \mathbb{C}$, $a \in \mathbb{C}^1$, $b(y) \neq 0$. If a(t) and b(t) satisfy the equality

$$a'(t)b(t) = 1,$$
 (1)

then the first order differential equation

$$y' = b(y) F(x, a(y))$$
 (2)

has a solution

$$y = f(u) \tag{3}$$

where u = u(x) is a solution of the equation

$$u' = F(x, u) \tag{4}$$

and f(u) is any solution of the equation

$$f'(u) - b(f(u)) = 0.$$
 (5)

Proof. Suppose that u = u(x) is a solution of (4). From (3), we obtain

$$y' = \frac{df}{du}u' . ag{6}$$

Putting

$$\frac{df}{du} = b(y), \quad u = \int \frac{dy}{b(y)}$$
 (7)

and from (6), (7) and (1) we get

$$u'(x) = \frac{y'}{b(y)}, \ a(t) = \int \frac{dt}{b(t)}, \ u = a(y).$$
 (8)

Substituting (8) into (4) we obtain the equation (2). Using (3) and the left hand side of (7) we obtain the equation (5).

Remark | By u = a(y) the equation (2) becomes (4). In this case, for instance, from $u = \ln(4y^3 + 6y^2 + 3y + \frac{1}{2})$ it is not easy to find y = h(u). On

^{*} Received Mar. 14, 1984.

the other hand, it is easy to find $f(u) = C \exp \frac{1}{3} u - \frac{1}{2}$ if $b(y) = \frac{1}{3} y + \frac{1}{6}$.

Remark 2 For the case F(x, u) = -pu - q we obtain a result in [1].

Corollary I If the general solution of (4) is $u = \varphi(x, C)$, then $y = f(\varphi(x, C))$ is a bunch of solution of (2).

Corollary 2 If the equation (4) has a periodic solution, then (2) has periodic solutions too.

Example | The equation

$$y' = y[\ln^2 y + 2(\sin x - 1)\ln y + \sin^2 x - 2\sin x - \cos x + 1]$$
 (9)

is of the same type as (2), here b(y) = y, $a(y) = \ln y$, and a'(y)b(y) = 1, i.e., the condition (1) is satisfied. Since the equation of Riccati type

$$u' = u^{2} + 2(\sin x - 1)u + \sin^{2}x - 2\sin x - \cos x + 1$$
 (10)

is of the same type as

(2.7) in [2], whose general solution is
$$u = 1 - \sin x - \frac{1}{x+C}$$
, (11)

and the equation (5) is of the form

$$f'(u) - f(u) = 0$$

which has a solution $f(u) = e^{u}$, by using Corollary 1 the function

$$y = \exp(1 - \sin x - \frac{1}{x + C})$$
 (12)

is a bunch of solution of (9).

In addition, it is easy to see that the equation (10) has a unique periodic solution $^{(3)}u = 1 - \sin x$, hence, by using Corollary 2 the equation (9) has a periodic solution $y = \exp(1 - \sin x)$.

Coro llary 3 Suppose that a solution u = u(x) of (4) satisfies the inequalities

$$g(x) < u(x) < h(x) \tag{13}$$

 (x_0, ∞) and that a solution f = f(u) of (5) is a strictly increasing function, then the solution y = y(x) of (2) satisfies the inequalities

$$f(g(x)) < y(x) < f(h(x))$$
 (14)

This corollary shows that the estimation of the solution of (2) can be obtained by that of (4).

Example 2 The solution y = y(x) of the initial value problem $y' = xy - y \ln^2 y$, $y(4) = e^2$ (15)

satisfies the inequalities

$$\exp(\sqrt{x} - 0.07) < y(x) < \exp\sqrt{x}$$
 (x>4)

and the solution y = y(x) of the initial value problem

$$y' = xe^{-y} - e^{y}, \quad y(4) = \ln 2$$
 (16)

satisfies the inequalities

$$\ln(\sqrt{x} - 0.07) < y(y) < \ln\sqrt{x} \qquad (x > 4)$$

because the solution u = u(x) of the initial value problem

$$u' = x - u^2$$
, $u(4) = 2$

satisfies for x>4 the inequalities [4]

$$\sqrt{x}$$
 - 0.07 < u(x) < \sqrt{x} .

Here a solution f = f(u) of (5) is of the form e^{u} , lnu respectively.

References

- 1. Thomas J.M., Equations equivalent to a linear differential equation, Proc. Amer. Math. Soc. 3(1952), pp. 899 -903.
- 2. Li Hongxiang (李鸿祥), Elementary quadratures of ordinary differential equation, Amer. Math. Monthly, 89 (March 1982), pp. 198—208; Math. Rev., 83d: 34008, p. 1444.
- 3. Li Hongxiang (李鸿祥), On periodic solutions of several classes of Riccati's equation and second order differential equation, Appl. Math. Mech., 3(1982), pp. 225—232.
- 4. Pilippov A.F., Collection of problems on Differential Equations (in Russian), Moscow, 1979.