Several Convexity Statements in Stochastic Programming (II) *

Lei Zhong xue (雷 忠 学)
(Suzhou Reilway Teachers College)

Peter kall discussed the convexity statement if $a_{i1}(\omega)$, \cdots , $a_{in}(\omega)$, $b_{i}(\omega)$ are independent random variables with known normal distributions [1]. In theorem 1, we discuss the convexity statement if $a_{ik}(\omega) \sim N(m_k, \sigma_k)$ $(k = 1, \dots, N; 1 \le N \le n)$ and others are fixed.

Theorem I If $a_{ik}(\omega) \sim N(m_k, \sigma_k)$ $(k=1, \dots, N; 1 \le N \le n)$ and $a_{ik}(\omega)$ $(k=1, \dots, N; 1 \le N \le n)$ are independent and others are fixed, then

(i) Suppose $a_i \ge \frac{1}{2}$, then $X_i(a_i)$ is convex.

(ii) Suppose
$$X \subset \{(x_1, \dots, x_n) \mid \sum_{k=1}^{N} m_k x_k + \sum_{k=N+1}^{n} a_{ik} x_k \ge b_i \}$$
, then $X_i(a_i)$ is convex

 $(0 \le a_i \le 1)$.

Besides, Yan Tiecheng discussed the convexity statement if $a_{i1}(\omega)$ is random variable and others are fixed and $X \subset \{x_1 \ge 0\}$ or $X \subset \{x_1 \le 0\}^{\lceil 2 \rceil}$. In theorem 2, we deal with the convexity statement for $X \subset \{-\infty < x_1 < \infty\}$ (i.e. $X \subset \mathbb{R}^n$).

Theorem 2 If $a_{i1}(\omega)$ is random varible and others are fixed and $a_i \ge \frac{1}{2}$, then $X_i(a_i)$ is convex.

References

- [1] Peter Kall, Stochaslic Linear Programming, Springer -Verlag, Berlin -Herdolberg -New -York, 1976.
- 〔2〕 颜铁成, 机会约束问题的几个凸性命题, 北京工业大学学报, 1981, 4.
 - * Received June 4,1986, Recommened by Yang An-zhou (杨安洲).