On an Extension of a Partition Identity and Its Abel-Analog*

Chu Wenchang

(Dalian Institute of Technology)

Recently, Hwang & Wei(1983) have proved the following partition identity: Proposition. Let $n_i (1 \le i \le m)$ be integers and $\sum_{i=1}^{m} n_i = n$. Then

$$\sum_{k_1+k_2+\cdots+k_m=k} \prod_{i=1}^m {n_i+1-k_i \choose k_i} = \sum_{j>0} {j+m-2 \choose m-2} {n+1-k-2j \choose k-2j}$$
 (1)

The combinatorial interpretation of the number $\binom{n-k+1}{k}$ and the induction principle were their main means. By using the power series method of G Gould (1984), this note will presents a multi-fold extension to (1) and its Abel's coefficient analog.

1. Generalization

For any complex numbers a, b, and c, Gould (1984) has found the following general closed form.

Lemmaal.1.
$$\sum_{k} \frac{a+ck}{a+(b+c)k} {a+(b+c)k \choose k} z^k = x^a \cdot \frac{x-b(x-1)}{x-(b+c)(x-1)}$$
 (2) where $z = (x-1)x^{-(b+c)}$.

From this we can prove a generalization to (1).

Theorem 1.2. Let a_1 be complex numbers and $a_1 + a_2 + \cdots + a_m = a$.

$$\sum_{k_1+k_2+\dots+k_m=k} \prod_{i=1}^m \frac{a_i+ck_i}{a_i+(b+c)k_i} {a_i+(b+c)k_i \choose k_i}$$

$$= \sum_{i,j} {m \choose i} {i-1+j \choose j} c^i (b+c)^j \cdot \frac{a+(i+j)(b+c-1)}{a+(b+c)k-i-j} {a+(b+c)k-i-j \choose k-i-j}$$
where we take ${-1 \choose 0} = 1$.

Proof. From (2) we know that the left side of (3) is equal to the coefficient of z^k in the expansion of the following fraction

$$x^{a} \left(\frac{x - b(x - 1)}{x - (b + c)(x - 1)} \right)^{m} \tag{4}$$

^{*} Received Sep. 28, 1984.

According to $\frac{x-b(x-1)}{x-(b+c)(x-1)} = 1 + \frac{c(x-1)}{x-(b+c)(x-1)}$ and Lemma1.1, we have the following expansion to (4):

$$x^{a} \sum_{i,j} {m \choose i} {i-1+j \choose j} \cdot c^{i} (b+c)^{j} \left(\frac{x-1}{x}\right)^{i+j}$$

$$= \sum_{i,j} {m \choose i} {i-1+j \choose j} \cdot c^{i} (b+c)^{j} x^{a+(b+c-1)(i+j)} z^{i+j}$$
(5)

Comparing (2) and (5) we have (3) and the theorem is proved.

If we take the following expansion instead of (5),

$$x^{a} \frac{x - b(x - 1)}{x - (b + c)(x - 1)} \sum_{i,j} {m - 1 \choose i} {i - 1 + j \choose j} c^{i} (b + c)^{j} \left(\frac{x - 1}{x}\right)^{i + j}$$

$$= \sum_{i,j} {m-1 \choose i} {i-1+j \choose j} c^i (b+c)^j x^{a+(b+c-1)(i+j)} \frac{x-b(x-1)}{x-(b+c)(x-1)} z^{i+j}$$

we obtain an alternate form of (3):

$$\sum_{k_{1}+k_{2}+\cdots+k_{m}=k} \prod_{i=1}^{m} \frac{a_{i}+ck_{i}}{a_{i}+(b+c)k_{i}} {a_{i}+(b+c)k_{i} \choose k_{i}}$$

$$= \sum_{i,j} {m-1 \choose i} {i-1+j \choose j} c^{i}(b+c)^{j} \cdot \frac{a+ck+(i+j)(b-1)}{a+(b+c)k-i-j} {a+(b+c)k-i-j \choose k-i-j}$$
(6)

If we take c = 0 and b = 0 in (3) and (6), respectively, we have the following degenerate consequences:

Corollary 1.3.

$$\sum_{k_1 + k_2 + \dots + k_n = k} \prod_{i=1}^m \frac{a_i}{a_i + k_i b} {a_i + k_i b \choose k_i} = \frac{a}{a + k b} {kb + a \choose k}$$
 (7)

Notice that $\sum_{i,j} {m-1 \choose i} {i-1+j \choose j} c^{i+j} = \sum_{n} {m+n-2 \choose n} c^n$, we have the mul

tifold extension of Jensen's formula due to Gould (1960).

Corollary 1.4.
$$\sum_{k_1 + k_2 + \dots + k_m = k} \prod_{i=1}^m {a_i + k_i c \choose k_i} = \sum_n {m+n-2 \choose n} {a+kc-n \choose k-n} c^n$$
(8)

If we take c = -1, and $a_i = n_i + 1$, then the left side of (8) equals

Coef. of
$$t^k$$
 in $\frac{1}{(1+t)^{m-1}(1-t)^{n+m-2k+1}} = \text{Coef. of } t^k$ in $\frac{1}{(1-t^2)^{m-1}(1-t)^{n-2k+2}}$

$$= \sum_{j>0} {j+m-2 \choose m-2} {n-k-2j+1 \choose k-2j}.$$

This is the result (1) of Hwang & Wei (1983).

In this section, we study the Abel's coefficient analog to the results men-

tioned in section I. The all conditions and proofs are quite the same as section I.

Lemma 2.1 (Gould, 1984).

$$\sum_{\substack{k \\ a+(b+c)k}} \frac{a+ck}{a+(b+c)k} \frac{(a+(b+c)k)^k}{k!} \cdot z^k = x^a \cdot \frac{1-b\log x}{1-(b+c)\log x},$$
 (9) where $z = x^{-(b+c)}\log x$.

From this, the following theorem can be proved.

Theorem 2.2.

$$\sum_{k_{1}+k_{2}+\cdots+k_{m}=k} \prod_{i=1}^{m} \frac{a_{i}+ck_{i}}{a_{i}+(b+c)k_{i}} \frac{\left[a_{i}+(b+c)k_{i}\right]^{k_{i}}}{k_{i}!}$$

$$= \sum_{i,j} {m \choose i} {i+j-1 \choose j} c^{i} \cdot \frac{a+(b+c)(i+j)}{a+k(b+c)} \cdot \frac{\left[a+(b+c)k\right]^{k-i-j}}{(k-i+j)!} (b+c)^{j}$$
(10)

Alternatively

$$\sum_{k_{1}+k_{2}+\cdots+k_{m}=k} \prod_{i=1}^{m} \frac{a_{i}+ck_{i}}{a_{i}+(b+c)k_{i}} = \frac{\left(a_{i}+(b+c)k_{i}\right)^{k_{i}}}{k_{i}!}$$

$$= \sum_{i,j} {m-1 \choose i} {i-1+j \choose j} c^{i}(b+c)^{j} \cdot \frac{a+ck+(i+j)b}{a+(b+c)k} = \frac{\left(a+(b+c)k\right)^{k-i-j}}{(k-i-j)!}$$
(11)

As theorem 1.2, it has the following consequences:

Corollary 2.3.

$$\sum_{k_1 + \kappa_2 + \dots + k_m = k} \prod_{i=1}^m \frac{a_i}{a_i + bk_i} \frac{(a_i + bk_i)^{k_i}}{k_i!} = \frac{a}{a + bk} \frac{(a + bk)^k}{k!}$$
(12)

Corollary 2.4.

$$\sum_{k_{i}+k_{j}+\dots+k_{n}=k} \prod_{i=1}^{n} \frac{(a_{i}+ck_{i})^{k_{i}}}{k_{i}!} = \sum_{n} {m+n-2 \choose n} \frac{(a+ck)^{n-1}}{(k-n)!} - c^{n}$$
(13)

The last one can be seen as a multi-fold extension of Jensen's formula for Abel's coefficient [1].

References

- [1] H. W. Generalization of a theorem of Jensen concerning convolutions, Duke Math. J. 27 (1960), 71-76.
- [2] P. K. Hwang & V. K. Wei. A partition identity, Discrete Math. 46(1983), 323-326.
- (3 ° H. W. Gould. New inverse series relations for finite and infinite series with applications, J. Math. Research & Exposition. 4 (1984) (2), 119-130.