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! Introduction

Recemly.' Penot[ 17 and Kirk { 2} obtained the abstract versions of Kirk's
fixed point theorem of [ 3] for nonexpansive mappings, respectively, Gille—
spie and Williams { 4, 5 replaced the reflexive and normal structure used
in Kirk({ 3] and Kannan( 6], by uniformly normal structure to obtain the
fixed point theorems for nonexpansive and Kannan mappings. Kaukich[ 7]
also extended the result of [ 3] to the generalized nonexpansive mappings,

In this paper, we obtain several new abstract fixed point theorems for
generalized nonexpansive and Kannan mappings in Hausdorff uniform topologi-

cal spaces which improve and generalize some main results of [y, 3,8].

2 Notation and Definition

Let (X, 1) be a Hausdorff uniform topological space where the uniform
topology 7 is generated by the family . of pseudo-metrics on X. A sequence
Ix, 17X is said to be 1-cauchy if and only if it is cauchy under the topo-
'logy generated by the pseudo-metric p for each pcw, We say that the seq-
uence ix,; T-converges to u if and only if it converges to « under the top-
ology gef\erated by p for each pg p., The space (X, 1) is said to be compl
ete if each t-cauchy sequence [, ! converges to a point x in X uander the
topology 7, Also note that for any x, yeX x=zyp if and only if there exists pe®
such that p(x, ») >0, A set FCUX is said to be bounded if for each pex
there is a real number M, > Osuch that ¢,(F) =supi{pix. »: x, yEF} <M,
where J,(F) is the p-diameter of F.
For each pec » and any bounded subset F{X let
rdF, py=supipix, yy:y&EF}|. and
rF, py=infir(F, pr:x€F},
Definition | A family & of subsets of (X, 1) is said to be compact. if
each subfamily of % which has the finite intersection property has nonvoid
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intersecrion,

Definition 2 Let f be a selfmapping of (X, 1) and ¢:( 0, c0) [0, o)
is a lower semicontinuous function from the right and satisfies @(5) >7, Vi >0,
The space (X, 1) is said to have strong normal structure if for each pcw

@(r(F, p))<0,(F) '
whenever F is a bounded closed f invariant subset of X,

Definition 3 Let f be a selfmapping of (X, 1), f is said to be a gen-
eralized nonexpansive mapping if for each p&#and all x, y€X
(AL pUfxY T asuplpOn wisu € (fx0 Ly Ul bRty 0
where . 6> 0, bxland a+b< 1,

Definition 4 Let f be a selfmapping of (X, 7). f is said to be a gen-
eralized Kannan mapping if for each pg ., there exists ¢,:XxX>[ 0, >0) satis

fying a,(x, v)+a,(y, x)<1and inf «,(x, y) > 0such that for all x, yeX

xnye X
POSx fy) S (xo3) plxy fx) +a,(y, X)piy, fy).
3 Main Results

Lemma | Let (X, 7) be a complete Hausdorff uniform topological space
Let {A,! be a decreasing sequence of nonempty closed subsets A, of X such
that

lim(5p<An) =
for all pe . . Then "
A, = (x", where x"€ X,

Proof For each »n choose an element x,€A,, since A, A, it n.>m, then
x,¢A4, for all n>m, Given ¢>0, for every pes there exists a n,>> 0 such
that <5,,(A,n)_<’_;c5p(A,,/J)fé_§6 whenever m>n,. Thus if m, n>n, pix,, x,)<0(A,,)<¢
and so !x,} is a p-cauchy sequence for each p&3, Therefore \x,! is also a
t-cauchy sequence and so [x,} converges to an element x*in X, since X is

complete, Moreover, for each fixed n, (x converges to x™as i—»oo, Since

x,., €A, for each i and since A, is closed, we conclude x*€ A,=A,, Thus
xre ;A,,:A. It follows that for each pce J6(A)= 0, which implies that A
contains at most a single poine, since X is Hausdorff, Therefore, ‘;\;A,.: Xty

Theorem | Let (X, 7y be a bounded complete Hausdorft uniform topolo
gical space, f:X—=X is a generalized nonexpansive mapping satisfying the
condition (A), If X has strongly normal structure about f, Then f has a fixed
point in X,

Proof Let # ={F:F is a nonempty f-invariant closed subset of X|. For
each fixed x€X, let L=L(x)=({1|FEF :x€F: and let L, =cl{f(L)iJlxi}(clA
denote the closure of A), we see easily that L, L and Sf(L,)C f(L)CL, and
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so L=1,. Let
L= veL:r (L. pp<raL, pb far all pcz .
Then L,=d, since xeL,, From the definition of r. (L, p) and the continuity
of each pe . it follows that L, is a closed set, Given ¢> 0, for any welL
and each peg4g there is a z,e f(L) _ ix} such that ptw, z,)<¢, since L=L1, =
cl i fcLy _ ixi., Also if z,=x, then for each yelL,
prlviyvewy s pcfys z + poz,ew
<opifyoxy+e<r (L, py Fe,
since f(L.)» ~ftLy "L, By the arbitrariness of ¢ and wé&€ L, we obtain
rpotLepr<ir(Ly pr. VYpex.
If z,&€ ftL). then there is a z,&L such that z,= fz] and for each yeL, L.

pefyvewi=iptfys fzpi = plz,ow)

@ SUpIply. U iu € tf"y;":}z RURE 44 Cwent * bpizx, frr+¢,
since y. z;€ L and fiL) L. we have (/"vi, ., ' f'=5., . , L. Therefore we

obtain
pifyiowr<ia ro(L, py+br, L. pr+elarccL, pry+bry (L, p)+e.

since v& L,, By the arbtrariness of w&lL and &, we deduce

rp(Le pra—"—r (L, precrL, pr. Y pe &

1-b
and hence fyz L, and f(L,»CL, which in turn implies L=L,=L(x)=y&
Lioxver.cLex), prirLix. py, for all pe % | and O,(Lix)) =r.(Lex)pr, Ypes.
Now consider x,¢ X. By the definitions of d,«L(xy)and r(Lcx). pi, there

exists a sequence !x,.,., such that

X, €Lix,,

Py (LCx,, p);\'_\%[r(L(x,,).p)+<5,,(L(X,,))]. Vn=0,1,and pc,
Thus we have L(x, ,)CL(x,) and

S,(Lx,, )= ,.XM(L(.x,Hl). p)<_r l(L(x,,), D)

g—é—[ML(x,,).p‘J+(5,,<L(x,,>>].\/11:0,1,---and pe®p 1)

since {6,,(L(x,,)):"20 and trL(x,). p)i,., are nonnegative decreasing seque-

ces, let lim J,(L(x,))=a, gnd let lim r(L(x,). p)=48,, obviously, f,< a,. On
h

e o
the other hand. putting n»2c in(]) we have «¢,<{f, and so «,=f,, Also sin-
ce X has strongly normal structure about f, we get

eril(x,, pr)<d,(Lix,), Yn=90,1,*+and pcgp . (2
since ¢ is lower semicontinuous from the right, letting n->>cin (2 ) we obt-
ain ¢(a,-La, which yield «,= 0.Ypeg.Using Lemma 1 we deduce that ni‘ Lix)

=
={x*} and hence x*= fx* This completes the proof of Theoremi .
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As an immediate consequence of Theorem 1, we have the following

Corollary | Let (X, d) be a bounded complete metric space , and f:
X-+X is such .that for all x, yeX

d(fx,'fy)ga_sup{d(x, uY:u e {j"x}nzou {f"y}nZO} +bd(y, fx),

where a,b>0, bx 1, and a+b<1. If X has strongly normal structure about
f, Then f has a fixed point in X,

Proof The desired conclusion follows from Theorem1 .

Remark | The corollary 1is an improvement of theorem of { 4] for the
cace of metric spaces, ’ ’

Theorem 2 Let «(X.mbe a bounded complete Hausdorff uniform. topolog-
ical space and f:X—X a generalized Kannan mappihg. suppose that there -
exists a nondécreasing function @:{g,>0)—[0,o0) satisfying lime"(r)= 0, V >

oo
0, where ¢" denotes the n-th iterate of @, If for each f-invariant closed su-
bset E of X there is a xo& E such that
P fxg )<< (S, (E) )
for all pe 4, then f has a unigue fixed point in X,
Proof We have E= {xeX:p(x, fx)<<e 0, (XN, VYV pc#® =, Let E, =

cl ( ftE)), then for any given ¢>0. y€ E, and for each pc4, there is a
z,& E such that p(y, fz,)<e. Therefore, we have

Py SV p(y, f2,)+ DSz, [y <e+a, (2, ) p(z, f2,)+

+a, (v z,)p(y, fy)<e+a, (2, V@3, (X0) + (1 =a,(z, ¥))ply, f¥).
and so

a,(z, ¥Iply, fy1<e+a,(z, y)e(d,(XN.

By the arbitrariness of ¢ and inf a,(x, y)>>0, we have
x, yi X

p(y, f,v)ii?p((SP(X)). Vpedhs
which in turn implies y€ E and E{CE. Thus f(E)H)Cf(EYCE, and 6,(E;) =
Oy fTE .Y peP .

On the other hand, for each pegand for all x, ye E, we have

pCSfx, [y)<la, (x, vy pix, fxi+a,(y, x)ply, fy)<p(d,(X))
which yields :
6,,(15,,):6,,<f<E>)f;¢>((5,,(X>>, Voe®.
By induction, there exists a sequence {E,] of nonempty f-invariant closed
subsets of X which sétisfies=

XDE, DE, Deee

and

S,(E,, V<0, (E)) e L@ 16, (XN, Y P . 3
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From (3) and the assumption of ¢ it follow that
limé,(E,) =0 Vpesp.

n—>cT

Lemmal implies that ~ E,= [x*! and hence fx*=x*.

n=1
Now suppose that »" is a second fixed point of f, Then for each pe %,
px* ¥ty = pofxt, fyt ) <a,(x*, y*Hpxt, fx*)
ta, (¥, x* v pyt fytr=0,
which implies x* = »*. Hence x* is a unique fixed point of f in X,

Remark 2 Clearly, Theorem2 improve and generalize Theorem 1 of Gill-

~ espie and Williams { 5) from several aspects.

Theaorem 3 Let (X, 7) be a bounded Hausdorff uniform space and f:X—

"X a generalized Kannan mapping, If each family of nonempty f-invariant
closed subsets of X is compact, Then for. each pc g there exists a x,& X such
that

pix, fx,)=inf [p(x, fx); xe X},

Proof For each pea ., let K,,='yeX:ip(y, fy)<r} and let I,= {re (0,
K,.=é), Then [,=6é, since X is bounded, Let H,, =cl (f(K,,)), we have K,
K, for any r.s€l,. r<s, and so H, “H,, for any r, scl,, r<s,

Obviously the family #,= 'H,,:r&1,} has the finite intersection property,
Now we shall show that each H,, is f-invariant, In fact, given ¢> 0,
for any r&l, and yeH,, there exists a xc K,, such that p(y, fx) <e., There-

fore we have
peyy fr < piye fx0+ pfx, fyy<le+a,(x,y)pix, fx)
ta,(y. x)py, fy)r<e+a,(x, y)~r+‘( 1 =a,(x, y))ply, fy),
and so
U, (X ply, fyiie=a, i x,yier,

By the arbitrariness of ¢ and inf «,(x, vy»> 0. we obtain pcy. fy)<r. which
PO 4 ’ .
iliplies v=K,. and H, ~K This in turn implies fi Hp‘,):f(Kp.,.» ~H,_,.and

— pare - par

hence H,, is [ invariant for all r<1I,, Because of the compactness of %,

r‘:l,Hﬁ.r:é' Thus, for each pe gothere is a x,&X such _that

PN, fx=infopoa, forixe X
Corollary 2 Let (X. d be a bounded metric space and [f:X -»X is such

that for alt x,re X , ‘
difx, fyv<Sacx, yidox, fxy+acy. xodoy. fy), (40

where a: X x X-»[(, =) satisfies a(x. ) +a(y, xi-. 1 and i.n\f.:x“(x’ i, If ea-

ch family of nenempty f-invariant closed subsets of X 'is compact, Then th-

ere is a x"z X such that
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dix™, fx*)=inf id(x, fx):x€X!,

Remark 3 It is easy to .check that Theorem 1 of Wong 7 87 is a wvery
special case of corollary 2 .

Theorem 4 Let (X, 7,be a bounded Hausdorff wuniform topological spaceand /:
XX a generalized Kannan mapping, If each family of nonempty  f-invaria
nt closed s>ubsets of X is compact, then the following conditions are equiva-
lent:

(a) f has a unique fixed point in X,

( b) For each pe®, infipix, fx):xeX), =0, - SR

(¢ for each pegpand x€X with p(x, fx)>0, there is a.y¢ X such
that plx, fx)>ply, fy). ,‘.

Proof It is clear that (a)=>(b) and (b)&(c), we only have need to pr
ove (b)=>(a), From (b) and Theorem 3 it follows that the set

A= {x€X, pix, fx)=0}F
for each pc4 . Let B, =cl (ftA,)), Using same argument as in the proof of
Theorem 3, we can show f(B, (B, '

We now prove that the family {B,: pc 4] has the finite intensection prop
erty, Let% be the subbase of the uniformity generated by % on X. Let pie#.
i=1,2,++, #n and let U&% be such that p is gauge of U,, i=1,2,++ #n, Let

U:V;LU,-, Then there is a VE% such that V U, Let py and p. be the ‘gau
ge'sho]f V and U respectively, since VCUU,, i=1,2,+, n, we have py >p
2P, i=1,2,>, n,By (b) and Theorem 3 there is yr A,,‘_ such that p, (¥ JAN _" .
Hence '

0= py (3, [y =po(y, fyyZpir. [y 220, i=1,2, 0,
Therefore »& A, and hence A, A, which imply B,,,_:B,,‘, i=1,2,+. n, Thus
f_\'(-.u B, . By the compactness of the family B,:pr . we have »’ B,=
Let lx*’é ~ B,. Then p(x™, fx*y = 0for all pr . This means that [f\'*g{ is a fi-
xed poig‘yof f in X. The uniqueness of x* is clear,

Corolléry 3 Let (X, d) be a bounded metric space and [+ X=X satisfi-
es (4 for all x, yeX. If each family of nonempty f-invariant closed subse
ts of X is compact, Then the following conditions are equivalent,

(a) f has a unique fixed point in X.

( by infldix, fx), x€EX| =10,

(c¢) for each x€X with d(x, fx) 0 there is a v¢ Xsuch that dcx, fx)
sdiy, fyo.

Remark 4 Theorem 2 of wong 7 8 1 is a special case of corollary 3 .
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(from p48)

Let P‘™ (x)=y(x, m)'y(x, n+1), then

Cm. n

m
Im = Z Com, n5n 3
n=0

m - m
= () A" )

Theorem In order that the transformation ( 3 ). should be regular, it is

necessary and sufficient that for every m sequence (P('")( myu,) should be the

difference of two totally monotone sequences, that

A"(P™ (g Yug) > 0 (m—>oc)

and that wo=1.

{13
£2)
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