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Let A; 0 = xp<lx,<++<x,=1 be a subdivision of (0,13}, T={0,1,2,3}, z,,,
z,,¢T, z,,<z;and
SA:{s(x)|s(x)€ C*0,1); s(x)ems, xelx;, x;41), i=0,1,ee,n—1}. For s(x)€
S,, denote the interpolation conditions
sEx) = £, ST ) = £ (), i=0, 10000

220221 %20

by ) and denote two additional interpolation conditions s(z()(xi)=

S

Zy0Z11°**21n
A/(z/)('x,‘), .s(z”)(xj):fzﬂ)(xj) by b(x;, zix;, z”), where z’€ T {z,, zy}, z"€ T\
Z,js 2,1+ Now, we call the following interpolation problems

Z30Z21°** 2o (220221"'zzn )

7 14
) *+b(xo, z3x,, 2,
Z10Z211°* Z1n Z10Z11°** 21

+b(x;, 23x;,2"), 0<i<j<n

(but two equalities do not hold simultaneously), and

Z20221°*° Z2n

/ ”
‘ )+b(x,-, zhx;,y 27
Z10Z11°"*2n

the type 1, type I, type Il respectively.

<
J

Recently, the authers''’ considered the existence and uniqueness of the

interpoletion problems of these three types. For fixed k¢ N, let

Z220Z21°**Z2n )

W = In this paper we consider the convergent problems of the

Z10211°** Z1n
recurrent interplation. By a recurrent interpolation we mean the interpolation,
n
—— Z20 N sZ220°22,k-1Z220°"* 22,k -1 20" 22,k -1% 0
7= (W,W,m,W, )_(

10 Zpo 2,k -1Z10%Z 1,k -1"** Z10°** 21,k -1%10

with two additional interpolation conditions such that the interpolation to be
regular of type I, type [ or type M, and
A 0= xo<x1<°°-<xk<xk+1<---<xk”= 1

to be equidistani, i.e., x=ih, h= kl—n .
Let Bz=B ZpZy B ZnZn ".B(Zz k=222 k-1 B Zrk-1%n N ? 1)
Z10Z11 ZnZy Z1k-2%1 k-1 Zy k-1 210
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where B ;,z, is so colled T-matrix‘!’,
2123
It is easy to verify that
‘detB(zzz‘)I =I dgtB(zzl) +detB z‘l)l, t.hus |detB(zzz‘) 'detB(z‘z6 I=IdetB z,2, I-
%12, z,0 z,0 z,24 Z;2 z, 24
Because of |[detB ;; |= 1 for all z;, z,€ T, consequently |detBy|=1.Acording-
Z,2,

ly we have

Lemma |l The eigenvalues A,, i, of By satisfy A,4,=+ 1.

Suppose that 1,21, are the eigenvalues of By, then there exists nonsingular

p
matrix P= (p“ l2), detP= 1 such that
Pa P2

A0
BW:})(OI 12)P". (2)

Furthermore, if any element of P is zero then the corresponding element of P’
which keeps (2 ) validity would be zero also.

: 23022122 k-1
In the following theorems, we assume that W =
Z10Z11*°° 21 k-1
n

Z=(WW,ww, ™) (3)

Z10

(r) )

and s (x,.)=%(s‘zx,) + Sy F=4,5, i=1,2,00, kn- 1

Theorem | Let f(x)e C%0,1),Z be defined in (3) and {m,, m,} = T\{z,,
Zy}, m<m,. Suppose the following conditions hold,
( i) the eigenvalues of By satisfy |4, |[>1>|4,];
(ii) s(x)€ S, is determined by the regular interpolation conditions of type
I: z+b(xgy 2y X4y 273
(i) p12pu¥x0, when z/=m;, 2"=my; p,1py*x0, when 2/ =my, z"=m,.
Then there exist constants C, depending on W only such that
|50 = fPCONLC ) fON® 7, r=0,1, 00,5,
Theorem2 Let f(x)e C% Z be defined in (3) and s(x)ec S, be determined
by the regular interpolation conditions '
zZ=z+b(x,, 2’3 x5 z") (4)
of type 1, type II or type M. If 4,=1, A,= - 1, then there exist constants
C’/ depending on W only such that
IsP) = £ L fP)h®TT, r=0,1,00,5 .
Theorem3 Let f(x)€C®% and s(x)€ S, be determined by the regular inte-
rpolation conditions (4) of type I, type I or type HW. If Bwit((l) 2) or
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i(? ;)and iy =4i,= 1, then
| s7Co =7l ST, =01, 4
0 0 i
or + , then
) ¢, ;)

| s7CO = fPOf T S NAT S r =0, 1,0 5
Some examples,

1

If By= < (O

2
1. W= (0 ). This is the case that"’’ considered. This time

-3 30
Bif:B(2 2>:< 1 3>
0 0 _Ez —2— X .
and its eigenvalues 4,=1,4,= —1.Because of B%F: (O 1), we have B&z Bﬁ. for
1 0
odd n and Bj= ( ; 1) for even n., Therefore, for odd #» and the recurrent
{

interpolation of type I, the boundary interpolation conditions may be arbitra -
rily selected. For even n, the boundary interpolation condditions may be selec-
ted to be b(xy, 135 x4 3) Or b(xy, 3: Xy, 1). For all these cases as well as
for the recurent interpolation of type [I, the degree of approximation is o)

and can not be improved.

7 .20
3 3 3
2. W= ( ).ThenB”:ngz( ) ,
0 Gy 0) 2 7
3 3
its eigenvalues /11,2:;-7—§———2\1— and any element of By does not vanish. So the

degree of approximation by the recurrent interpolation of type I attains O(k®),

no matter what boundary interpolation conditions are chosen. Similarly, if
1

W= (0) then the degree of approximation by the recurrent interpolation of

type I also attains O(h®).

L3 13 8
3. W::(O 2).Then BWZB(1 3.B3 1. =(

0 D G 2l

i), A12=13 + /168,
and so the degree of approximations by any recurrent interpoaltion of type I
attains O(h%).
Before proving the theorems mentioned above, we give some lemmas.
—(x-0°, <x<u
Lemma2 Let Q.(x; D= { (x-0%, u<lr<x;
0 , otherwise.
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Suppose that f(x) €& C°0,1) and S3(x; f) €S, be determined by the regular inter-
polation conditions (4), then

) ’ 1 ’
sUus = 10w =25 [ 1O s 0 s 0)dr (5)
Proof For «€{0,1] we have
1
fo= Lo w v O o, par
i=0 .

According to the regularity of Z, linear functional S;(u; f) - f(u) vanishes as
fc&ns. Noting that Q(u;¢)= 0, we have

1
ssus ) = f0 =27 [ S s Qu 5 0)dr
g

Thus we obtain (5) as r<4. When r=4,5, we can process in subintervals and
obtain ( 5) similarly. Lemma 2 established.

Now we denote the set of quintic lacunary interpolation splines with all of
knots locate at integers lie in (0,nJ)(or (0,4kn] according to the number of knots)
and denote the set of all this kind of splines by §". We have

Lemma3 Let f(x)€C°l0,1) and sy(x; f) &S, be determined by the regu-
lar interpolation conditions ( 4 ), then

6
s Cus ) = £ < H . maxj F93Cu; Q5 0) |dr
u & [
Proof Put u=ph, from Lemma 2 we have

s (ohs f) - f<uh>—,,f £Oh) S 3w, Q.5 0)dr

thus
Q) _ o MPs s .
|s9Cs £ = SO < SV max [7] 55 @10 |ds
. ve (0,m3V0

and lemma 3 esablished.

Set cardinal functions of the regular interpolation conditions
Z=z+b(i’',2';i", 2" (6)
to be L(x)ES, (n=1,2, i=0,1,+,n+1) satisfying

L) |oir,zrinen= 05 Ly (D=0, (1%,
Ly =08, n=1.25 iy j=0,1,%,n,

Ly <x>!z—0, Li’n’H(z y=1, L“nq(z”) =0,

Ly, (0= 0, L)) =0, LY 8=1,

z Z see z
where Z:( 20 Z21 2n )
Ty Iy Y Zaa

Lemma4 Suppose that cardinal functions fo the regular interpdlation condi-
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tions (6 ) for x€(Jj,j+ 1], n=1,2, i, j=0,1,«, n. satisfy
| oo | <cerl™ f' | Lo <G L, i | <Ced T (7
where 0 <A<1, (4 is a constant independing of »n then there exists constant

C,, independent of n, such that
f s Qs )| di<C, (8)

holds for all uc {0, nJ.

Proof We abbreviate sz as 5. From the definition of L, (x), we have

n 2 . ,
s Qi) = Z ZDi"Qu<x; DLy (u) +Df Q,(xi) Ly .y (1)
i=0n=

n u

ry

Q (X I)LZ ’l‘l(u)
where

D} Q(xf)‘ Q(x Oe=;

Suppose that wciny, ng+ 13, as t<u, I'E[A},j +1]). For definiteness, assume i’ <u

<i”, from (7)), we have

il —n 2 J ”) aj +1
|57, 0 s )| dr< Z 560 - =+
7 =1 i=0 v

. j ) b i Lny =
w60] L) o [] (= *dr<go it Vit = GGt (9)
i=0
Similarly, as r>u, t&{j,j+1], we have
[E . N
’ 57w, QuC s ) [de CCy i . (10)
cJ
When 1, u lie in the same interval [n,, ny+ 1) we can discuss in the interva-
als Uny, w) and Cu,n, +~ 17 respectively and obtain the same results as (9 ) and
(10, thus

J'O 57 Cu; Qo5 1) |dr<l2CCy(L + 4+ A2+ 000 V<C,,  u€(0,n).

Lemma 4 established.
Remark For fixed k€ N, we consider the situation that all of knots locate
at integers lie in [0,4kn). If

i ry, . /-.1It
| L, (x) < a!m

-y

(1)
holds for xe& Chkny, k(ng+ 1)1, i=kn +r, 0<r, <k, we can prove similarly that
( 8 ) still holds for ;, depending on & .

Lemmab Suppose that there exists constant Cy such that

FL ol <Coy n=1,2, i=0,1,%,n+1, xe(0,n],
then there exists constant C.., independent of n, such that
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ST 0. 50> de<Coon

Proof We consider the situation r=0 at first. If re(j, j+1], j+1<u we

have ‘
us Q30D ="s(us (1 = %)}

Put r=j+1, 0<1<C1, then ) ‘

(1=x))= (G =x)2+5( —x) 1+ 100 - xV17 + 10— + 5 —x), 18 + (- x)07°, (13)
where -

(p(x)). = {w(x), XEEO,{'H]

0 , otherwise
Because of (j-x)° and its derivatives equal to'(j-x)® and its derivaties respec-
tively at the integer knots, therefore, by the regularity -of interpolation, we have

Hus(J-0D) =Rus (G-0D=0G-ui=0, (14)
Similarly

Nus (G~ =S (j-0H=G-wi=0 (15)
and

Nus G-x)) = us(j~x)2), v=0,1,2,3. (16)

In the above equalities, we mean the derivatives of the right hand side at the
discontinuous point to be left derivatives, Put

(j-x)° xe(0,j-1],
S-St 1, xelU-1,7) wEx-G-D, 0<k<L,
So(x):
“Sa-wt+2a-wt, xeU i) umx -, 0<u<t,
0 otherwise ;
(j-x), xEEO’j°l’
—%/45*'%‘/4“%”'1. xeU=Ljhu=x-G-1D, Ku<ll,
5;(x) = .
AW AW, x€ Ui+ 1), w=xy 0<u<L,
0 otherwise;
(j_x)z ’ XE[O,j_lj,
_S5s. 1 s a2 C_ 1 (i
gU TgH e ut, xe(j-1LJjl), u=x-({ -1, o<u<ll,
5.(x)=
S A=W -2 A-w*, x€UyJ+1), u=x—j, 0<u<l,
0, otherwise ;
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(j_x)} ’ XEEO’j—lj9 -

I%u’—glﬂ"ﬂl’wﬂz-&ﬁl, xe(j-1,j) u=x-(-1, o<u<l,
Sg(X):

1—%(1—/4)5—%(1—;4)‘ . x€U it u=x-j, 0<u<l ,

0 ) otherwise.
Obviously, sy(x)eg,,, r=0,1,2,3. According to the regularity of interpolatton
and #>j+ 1, we obtaip
Suss(x))=s,(u)=10, v=0,1,2,3. a7n

For v=0,1,2,3. at knots sv(x‘) and its derivatives equal to (j - x)’ and its deriv-
atives respectively but x=j. Thus from (16)(17) we have

Sus (f-x)) =5 (- x)l—5,(x))

= D= %)= s, L ) + DG = x)! = 5,00 Ly (u), (18)
when the addtional condition just locates in the knot x =/, the right hand side
of (18) must add the corresponding term L, ,.{u) or L, ,,.{u). From (12),(13).
(14),(15),(18), when r=j+1, 0<1<1, j+1<u we have

2 7 2
s Qu(+3 1)) = 1012 Zln,?w«j - x)3 =50 L, (u) +107° ZlDf”((j—x)f—sz(x))L”(u)
. n= n=

2 2
+57* ZID,‘F"(U = x), = s x W L, (x) +7° Zle"’((j = 1))~ 5oQ) Ly (u)
n= e

perhaps with the linear combination of L, ,. (u) or L, ,.(u). Thus, from the
hypotheses of Lemma 5 we obtain

.
f/’ | SCus Qu(- 3 | d1<CoCyy (19

where C,, is a constant. As u<j<ir<j+1, te[[uj-, ¥) and rc{w Lul+1] 19
holds similarly, Therefore

fo |'SCus Q-3 [ dr<<Cion .

Thus, as r= 0, Lemma 5 established. In the case of r> (0, we can prove
similarly. We finish the proof of Lemma 5.

Z2 221 ** Z2,k-12%%
Lemma6 Put W=

),ZZkZZZO9 Zi = 2y, and
21 211 " Zhk-1 %9k

{myy myuy =T\{zy;, 23}, m<<my, i=0,1,, k. (20)
Suppose E(x)eg:, satisfies ?(x)lw7 =0, xe(j,j+k]. Set
4, =5"G+D, B =SNG D, P=0.1,00,k,
yi=max{zVG +i+), VG +i,
S, =max{5sV0G+i+), S +i-)) i=1,2,0 k-1,

and p,, dy, Vi, O, mean the oneside derivatives in the interval (j, j+4]). Then
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there exists a constant C,, depending on W only such that

._{]nlax k{lai"‘ Billyll 61 <Ciymax{|ag s/ Bo |} » 2D
max |s7(x)|<Chymax{|a |,/ B ]) . (22)

x€(j, j+k)

£=0.1, 0,5

Instead of ay, B4,by, @y, Bi, (21),(22) still hold.
Proof According to the definition of T-matrix, we have
Ca;y B = (ag, Bo) B(zzo a0y

(zz,l—lv Zu
Zip Zn 2y -1 Iy

Because of this kind of matrices have only in totality & and p,, §, are detemined
by a;-y, Bi-1» @;,B;» a;.; and B;,;, thus (21) holds. Besides, it is obviovs that
a polynomial in an interval is uniquely detemined by its values and derivatives
at the end of the interval. Thus (22) holds and Lemma 6 established.

Now we turn to prove theorems mentioned above.

)

kn __
Proof of Theorem | By Lemma 3, it is sufficient to prove that fo IS;-(’ (u;

Q,(-31)|dt<Cy;, where C,y is independent of n. By Lemma 4 and the remark
after it, we need only to verify that the inequalities (11) hold.

Set {m,;, my} =TV {zy, zy}, m;<my.Suppose that in the interval (0,1].
Py(1) € 75 satisfies

0 1 0 0
PO(’)‘ Zy Za . = or 23
R S BN CEOIRI R
T Znt
m m (23)
P(()w)(O)zad, Pé) 33(0)=,Bo
It is obvious that a, = P{™’( 1), B,=P{ (1) satisfy
(a,B)) =(ag, BB -, 2, +(a', b). (24)
Zy0 Zn

Furthermore, in the interilal (1,2], Pi(r)e ms is determined uniquely by the
following interpolation conditions;

1 0 0 0
Pl(t))(zu 222)2(0 0) (Or(l 0))'
) 25y 252 I (25)
P(lnm ( 1 ) =a1, P]”Izl ( 1 ) :ﬂl

Set a,= P™?(2), ﬂ3=P(,"’")( 2), noting (24) we obtain
(azs By) = (ag, fy) B +(a, by . (26)

Zw Iy B Zy 2y
Zp 2y T Ziz

Because the variation of all these 8 z,, are finite, so all of 4,5 are bounded.On
account of the polynomials PB(t), P,(r) determined by (23),(25) are unique,
snd so it is true in any interval (i, i+ 2 J.

Now suppose that i=kn, +/, 0</<k. Put
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= = .. -
1 =B Zw 22 ."B(zz 2 23 aay? B,=B Zy 1 2 /+z). B Zy kot Za0y

20 21 22 T T T ER
a;= Ly"(j), B;=L"(j) and ny=n-n,~ 1. From the definition of T-matrix
and (26) we have
(a;-y Bi-1) = (ap, Bo) ByBy,
(@ie1 Biv) = (@i, /3:"—1)3(22 - zz,)B
o 2 VEy 2w
(@ Baw) = (@ uys Biv)) BiB7 .
Noting that B B B, = By, we have

+(a,b),

Su Z2m

(22 -1 Zy ) B(zz/ Z, 1Y

2 Ly 24 A

(@uns Bin) = (agy Bo) B+ (ay, b)) By, @n

where (a,, b)) =(a, b)B,. Because the variations of B, caused by the variations
of / have only k different kinds, and so {(a,b)} is a bounded set.

According to the hypothesis of Theorem | that the eigenvalues of By satis—

fying [ 4,|> 1>]4,|, so there exists a nonsingular matrix P= (21712 det p= 1,

21 Pn
such that
A 0 -
B (" Oy
0 /a
This time (27) becomes
A0 B A0 _
(@im Bin) = (@0, BOP (' )P+ (a0 ()P, (28)
0 Az 0 /»2"
i.e.
Qep = Co(Ar P Poa = A3P 1Py + Bo(AT = A7) Py Pyp +
A (AP Py = A5P 1 Py + b (A 43D Py, Py s (29)
Bin=aog( = AT+ 2 Py Py + Bo( = A7 Pyg Py + 43Py Pyy) +
Fa (— AP A PPyt by (= AP Py + AP Py (30

As the boundary interpolation conditions are b(0, m;; kn, m ), we have
ay = a;,= 0. On account of the regularity of the interpolation problem, it is obv-
ious that (i{- i) p;; P, 0. Noting that|[4,4i,|{=1, we can solve £, from (29).
Substituting g, in (30) we obtain B,,. Then we have

[Bo | <Cial a2 "™, | Bin| <Ciralis|™ (31
where C,, is a constant independent of n.

As the boundary interpolation conditions are 5(0, m,; kn, my) we have a,=
Bin= 0. On acconut of the regularity of the interpolation problem, it is obvious
that = i{p,py + 21PiP2 0 . By the hypothesis (iii) of Theorem 1. p;;p) =0,
from (29),(30) we obtain

| Bo | <Cral 221"7" s | @in <Cro| 221
similarly., As for the other two types of boundary interpolation conditions and
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the situations for L,(x), L,:.(x) anh L, ,;,.,(x) can be discussed similarly.The-
refore from (ay;, B¢ = (ag, ﬂO)B{f we conclude that there exists constant C,s such
that

La | <<Cisl 221" 777 1B I<Cosl A I 70, ki< (33)

la | <Cis i7", | By | <Cis| V7" 70 ki>i (34
From Lemma 6 we have .

1y ON<C A 1y chy ke 1)

Using the similar proof of Lemma 6, from (33),(34) we can deduce that
]Lf,f)(x)'<C16 holds for x¢ (kn,, k(n, +1)3. Thus, we complete the proof for
Theorem 1.

Proof of Theorem2 On account of Lemma 5, it is sufficient to prove
that the cardinal functions L (x) at integer knots determined by the recurrent
interpolation Z satisfy the following inequalities

|L;:)(X)I<C,7.

As the interpolation condition is of type I, because of Af=1, A5+ 11 the bou-
(5)
ni

1. As the interpolation condition is of type I, the boundness of L

ndness of L,  (x) is deduced from (29) and (30) as well as the proof of Theorem

3
ni

from (28) immediately. As the interpolation condition is of type [I, the same

(x) follows
conclusion holds just as the analysis we give above for type I and type 1I.
Proof of Theorem3 is similar to that of Theorem 2 and 3.
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