A New Approach to The Upwind Finite Elements*

(Institute of Applied Mathematics, Dalian Institute of Technology)

We want to describe a new way for deriving the upwind finite elements by a simple example. Consider the boundary value problem,

$$\left\{ \begin{array}{l} -\varepsilon u'' + u' = 1 \ , \quad 0 < x < 1 \ , \\ u(0) = u(1) = 0 \ , \end{array} \right. \tag{1}$$

with ε a small parameter. Let h=1/N and $x_i=ih$, $0 \le i \le N$. Denote

$$v_i(x) = \begin{cases} (x - x_{i-1})/h, & x_{i-1} < x \le x_i \\ (x_{i+1} - x_i)/h, & x_i < x \le x_{i+1}, & 1 \le i \le N-1. \\ 0 & \text{otherwise} \end{cases}$$

And set V_h the space spanned by v_1 , ..., v_{N-1} . The normal finite element method for problem (1) is to find $u_h \in V_h$, such that,

$$\varepsilon \int_{0}^{1} u_{h}' v_{h}' dx - \int_{0}^{1} u v_{h} dx = \int_{0}^{1} v_{h} dx, \quad \forall v_{h} \in V_{h}.$$
 (2)

Let
$$u_h = \sum_{i=1}^{N-1} u_i v_i$$
, $u_0 = u_N = 0$, and $\widetilde{u_h}(X) = ((1-\alpha)u_j + (1+\alpha)u_{j-1})/2$ for $x \in [x_{j-1}, x_{j-1}]$

 x_j) with a a constant to be determined. Now we replace u_a in the second term of the left side of equation (2) by $\widetilde{u_h}$, and get

$$\left(-\frac{\varepsilon}{h^{2}} + \frac{(1-a)}{2h}\right) u_{i+1} + \left(\frac{2\varepsilon}{h^{2}} + \frac{a}{h}\right) u_{i} + \left(-\frac{\varepsilon}{h^{2}} - \frac{(1+a)}{2h}\right) u_{i+1} = 1,$$

$$1 \le i \le N-1$$

$$u_{0} = u_{N} = 0.$$
(3)

Equations (3) is the normal finite element with a=0, and the upwind finite element with a=1. The above method need not introduce a special test functions as in [1]. The upwind meaning can be seen from \widetilde{u}_h directly.

This method can be generalized to other cases. For example, we can get the upwind defference scheme of five points in the case of two dimension.

Reference

[1] Zienkiewicz, O.C., Heinrich, J.C., Finite Elements in Fluids, Vol. 3, Wiley, London, 1978.

^{*} Received Nov. 22, 1986.