The Logical Derivatives and Integrals (II) *

Zheng Weixing (郑维行) Su Weiyi (苏维宜)
(Nanjing University)

The logical (or p-adic) derivative and integral of a complex function on $R^+ = \{0, \infty\}$ are defined in $\{2\}$, $\{4\}$. Some relations between p-adic derivative $D^{(1)}f$ and integral $I^{(1)}f$ for $f \in L^q_{\{0,1\}}$, $1 \le q < \infty$, and for $f \in L^q_{R^+}$, $1 \le q \le 2$, are discussed, see also $\{1\}$, $\{5\}$, e.g., for some functions f, one has the formulas:

$$D^{\langle 1 \rangle}(I^{\langle 1 \rangle}f) = f, \qquad I^{\langle 1 \rangle}(D^{\langle 1 \rangle}f) = f.$$

In this note we are continuing the discussion of $\{4\}$. In particular, we define the Walsh-Fourier Transform (WFT) of $f \in L_{\mathbb{R}^+}^q$, $2 < q < \infty$ and extend some results on $D^{(1)}f$ and $I^{(1)}f$ by using the test function class and distribution theory.

1 Preliminaries

For any integer $N \in \mathbb{Z}$, let

$$I_{k,N} = \{x \in \mathbb{R}^+: kp^{-N} \le x < (k+1)p^{-N}\}, k \in \mathbb{P} = \{0, 1, 2, \dots\}.$$

Denote by $\Phi_N(x)$, the characteristic functions of the interval $I_{0,N} = \{0, p^{-N}\}, \tau_h$ the translation operator $(\tau_h f)(x) = f(x \ominus h), x, h \in \mathbb{R}^+$, and U the class

$$\mathbf{U} = \{ \varphi : \varphi(\mathbf{x}) = \sum_{j=0}^{n} c_{j} \pi_{k_{j}} \Phi_{N}(\mathbf{x}), \quad c_{j} \in \mathbb{C}, h_{j} \in \mathbb{R}^{+}, n \in \mathbb{N} \}.$$

It is clear that each $\varphi \in U$ has compact support.

We call $\{\varphi_n\}$ in U a null sequence, if (i) there is a fixed pair of integers N, s such that each φ_n is a constant on any interval $I_{j,N}$ and is supported on the compact set $\overline{I}_{0,s}$, and (ii) $\lim_{n\to\infty} \varphi_n(x)=0$ uniformly on R^+ . With this topology, U becomes a topological linear space over C, and it is obviously Hausdorff and complete. We call U the test function class. As usual, with the weak* topology the collection U^* of all continuous linear functionals on U is said to be the space of distributions. The action of $f \in U^*$ on $\varphi \in U$ is denoted by (f,φ) . Let φ be the WFT of $\varphi \in U$, it is easy to see that the WFT is a homeomorphism on U.

The WFT of $f \in U$ is defined by the formula.

$$(f, \varphi) = (f, \varphi^{\wedge}) \varphi \in U$$
.

Convolutions, products and invese WFT can be defined in the usual way. See [3] for details.

^{*} Received Jan. 11, 1984.

Let f be a function in $L_{\mathbf{k}}^q$, $1 \le q < \infty$. We define its WFT f^{\wedge} , when it exists, to be a distribution, such that the equalities

$$(f, \varphi) = (f, \varphi^{\wedge}), \forall \varphi \in \mathbf{U}$$

are fulfilled. In this case, we always assume that f^{\wedge} is a linear functional over $L_{\mathbf{R}^{+}}^{q}$, where q' is the conjugate index of q so that the domain of f can be extended from U to the whole space L^{q} .

If $f, g \in L_{\mathbb{R}}^q$, $1 \le q < \infty$, the product $f \circ g$ is defind as a distribution by $(f \circ g, \varphi) = (f \circ g \circ g), \forall \varphi \in U$.

If $f \in L_{\mathbf{R}^-}^q$, $1 \le q < \infty$, $\psi \in \mathbf{U}$, the convolution $f \bullet \psi$ is a functional h over $L_{\mathbf{R}^+}^q$, satisfying $(h, \varphi) = (f, \widetilde{\psi} \bigoplus \varphi), \ \forall \varphi \in \mathbf{U},$

where $\widetilde{\psi}(x) = \psi(-x)$, and $(\psi \oplus \varphi)(x) = \int_{\mathbb{R}^+} \psi(y) \varphi(x \oplus y) dy$, and as we see, $\widetilde{\psi} \otimes \varphi$ is again in U.This definition can be generalized to the case of $f \in L_{\mathbb{R}^+}^q$, $g \in L_{\mathbb{R}^+}^{q'}$. Then in the distribution sense we have $(f \oplus g)^{\wedge} = f \circ g^{\wedge}$.

2 The p-adic derivatives and integals of $f \in L_R^q$, $2 < q < \infty$

We use the following notations (compare with [4])

$$D_{a}(t) = \int_{0}^{a} \omega(x, t) dx, \ a, t \in \mathbb{R}^{+},$$

$$S(f, a; x) = \int_{0}^{+\infty} f(x \ominus u) D_{a}(u) du \equiv (D_{a} \ominus f)(x)$$

and

$$(D_m^{(1)}f)(x) = \sum_{k=-m}^{m} p^k \sum_{j=0}^{p-1} A_j f(x \oplus j p^{-k-1}).$$

 $D^{\langle 1 \rangle} f$ is the p-adic derivative of f, it is the strong limit of $D_m^{\langle 1 \rangle} f$ in $L_{\mathbf{R}^+}^q$.

 $V_{1,n}$ is a basic function defined by its WFT

$$V_{1,n}^{\uparrow}(t) = \begin{cases} \frac{1}{t}, & t \in [p^{-n}, \infty), \\ 0, & t \in [0, p^{-n}), \end{cases} \quad n \in \mathbb{Z},$$

and we have $V_{1,n} \in L_{\mathbb{R}^+}^1 \cap L_{\mathbb{R}^+}^2$ for each fixed $n^{(4)}$.

 $I^{(1)}f$ is the p-adic integral of f, it is the strong limit of $(V_{1,n} \oplus f)(x)$ in $L_{\mathbb{R}^+}^q$. For the WFT of p-adic derivative, we have

Theorem 1 If f and $D^{(r)}f \in L_{\mathbb{R}^+}^q$, then for $r \in \mathbb{N}$, $(D^{(r)}f)^{\wedge} = v^r f$ in the distribution sense.

Proof We only deal with the case r=1; r>1 can be completed by induction. For r=1, by definition, the table [5] of WFT and the Lebesgue dominated conver-

gent theorem, it follows for all $\varphi \in U$

$$([D^{(1)}f]^{\hat{}}\varphi) = (D^{(1)}f, \varphi^{\hat{}}) = \lim_{m \to \infty} \sum_{j=0}^{p-1} (\sum_{k=-m}^{m} p^{k}A_{j}f, \tau_{jp-k+1}\varphi^{\hat{}})$$

$$= \lim_{m \to \infty} ([\sum_{k=-m}^{m} p^{k} \sum_{j=0}^{p-1} A_{j} w(jp^{-k-1}, \circ)\varphi(\circ)]^{\hat{}},$$

$$= ([\lim_{m \to \infty} \sum_{k=-m}^{m} p^{k} \sum_{j=0}^{p-1} A_{j} w(jp^{-k-1}, \circ)\varphi(\circ)]^{\hat{}}, f)$$

$$= 218 -$$

$$= ([\circ \varphi(\circ)]^{\wedge}, f) = (f^{\wedge} \varphi(\circ)) = (\circ f^{\wedge}(\circ), \varphi)$$

Therefore $[D^{++}]^{\wedge} = vf^{\wedge}$ in the distribution sense.

To establish the main theorem, we need a series of lemmas.

Lemma 1 [4] If $f \in L_R^q$, then $S(f; p^n; x) \in L_R^q$ and

$$\|S(f; p^n; \circ)\|_q \le \|f\|_q, \lim_{n \to \infty} \|S(f; p^n; \circ) - f(\circ)\|_q = 0.$$
 Lemma 2 If $f \in L_R^g$ and $f = 0$, then $f(x) = 0$ a.e.

Proof For all $\varphi \in U$, we have $(f, \varphi^{\wedge}) = (f^{\wedge}, \varphi) = 0$ and since FWT is a homeomorphism on U, we conclude f(x) = 0 a.e.

Lemma 3 If $f \in L_R^q$, and $\lim_{n \to \infty} \int_0^{n} f(u) du = 0$, then $\lim_{n \to \infty} ||S(f; p^{-n}, \circ)||_q = 0$. Proof Let $\varepsilon > 0$ be given, choose $n_{\varepsilon} > 0$, such that both of the inequalities

$$\left| \int_{0}^{p^{n}} f(u) du \right| < (\varepsilon/2)^{1/g}, \int_{p^{n}}^{\infty} \left| f(u) \right|^{q} du < (\varepsilon/2)^{1/q}$$

hold for $n > n_{\epsilon}$. And since

$$S(f; p^{-n}; x) = \int_0^\infty f(x - u) D_p - (u) du = p^{-n} \int_0^{p^n} f(x - u) du,$$

we have for $n > n_{\varepsilon}$

$$\|S(f; p^{-n}; o)\|_q^q = \int_0^{p^n} |p^{-n}|_{\infty}^{p^n} f(x \ominus u) du \| dx = \left\{ \int_0^{p^n} + \int_0^{\infty} \right\} |p^n|_0^q f(x \ominus u) du \| dx = I_1 + I_2,$$

say. For I_1 , it follows

$$I_1^{1/q} = \{ \int_0^{p^n} |p^{-n}|^{p^n} f(x \oplus u) du |^q dx \}^{1/q} < \{ \frac{\varepsilon}{2} p^{-n} \int_0^{p^n} dx \}^{1/q} = (\frac{\varepsilon}{2})^{1/q},$$

so that $I_1 < \varepsilon/2$ as $n > n_\varepsilon$. For I_2 , we have

$$I_{2}^{1/q} = \{ \int_{p^{n}}^{\infty} p^{-n} \int_{0}^{p^{n}} f(x \in u) du \mid dx \}^{1/q} \leq p^{-n} \int_{0}^{p^{n}} \{ \mid f(x) \mid dx \}^{1/q} du,$$

therefore $I_2 < \varepsilon/2$ for $n > n_{\varepsilon}$, the proof is complete.

Lemma 4 If $f \in L_{\mathbb{R}}^q$, and $D^{(+)}f = 0$, then f(x) = 0 a.e.

Proof We have for all $\varphi \in U$

$$([D^{(1)}f]^{\wedge}, \varphi) = (D^{(1)}f, \varphi^{\wedge}) = 0,$$

hence $(D^{(1)}f)^{\wedge}=0$ in the distribution sense. By Theorem 1, $vf^{\wedge}=(D^{(1)}f)^{\wedge}=0$ a.e. It means for any $\varphi \in U$, $(f, v\varphi) = (vf, \varphi) = 0$. On the other hand, it is plain that the class $vU = \{v\varphi : \varphi \in U\}$ is dense in L_{φ}^q , so f = 0 as a distribution. Hence f(x) = 0 a.e. again by Theorem 1. That is all for the proof.

Lemma 5 Let $m, n \in \mathbb{N}$, and m > n. Then

$$(V_{1,n} \otimes f)(x) - (V_{1,m} \otimes f)(x) = S(g; p^{-n}; x) - S(g; p^{-m}; x)$$
 a.e.

Where $f, g \in L_R^q$ and $g^* = \begin{cases} v^{-1}f, v \in (0, \infty), \\ 0, v = 0. \end{cases}$

Proof It is well known that $V_{1:n} \in L_{R}^{\perp}$, whence

$$[V_{1,n} \bigotimes f]^{\wedge} = V_{1,n}^{\wedge} f^{\wedge} = \begin{cases} v^{-1} f_{\bullet}^{\wedge} & v \in [p^{-n}, \infty), \\ 0, v \in [0, p^{-n}). \end{cases}$$

Therefore for m > n, it follows

$$(V_{1,n} \oplus f) - (V_{1,m} \oplus f)' = \begin{cases} 0, & v \in (p^{-n}, \infty), \\ v^{-1}f, & v \in (p^{-m}, p^{-n}), \\ 0, & v \in (0, p^{-n}). \end{cases}$$

On the other hand.

$$[S(g; p^{-n}; \circ)]^{\hat{}}(v) = g^{\hat{}}D_{p^{-n}}(v) = \begin{cases} 0, & v \in [p^{-n}, \infty), \\ g, & v \in [0, p^{-n}), \end{cases}$$

SO

$$[S(g; p^{-n}; \circ)^{\hat{}}(v) - [S(g; p^{-m}; \circ)]^{\hat{}}(v) = \begin{cases} 0, & v \in [p^{-n}, \infty), \\ g^{\hat{}}, & v \in [p^{-m}, p^{-n}), \\ 0, & v \in [0, p^{-m}). \end{cases}$$

By Lemma 2 we get the formula

$$(V_{1,n} \otimes f)(x) - (V_{1,n} \otimes f)(x) = S(g; p^{-n}; x) - S(g; p^{-m}; x) \ a_*e_*$$

The Lemma is proved.

Now let \widetilde{U} be the subclass of U:

$$\widetilde{\mathbf{U}} = \{ \varphi \in \mathbf{U}, \int_{\mathbf{R}^+} \varphi(t) dt = 0 \}.$$

For our purpose we would like to introduce a condition as follows.

Condition (*) If $g \in L_{R}^{q}$, and g^{\wedge} can be determined uniquely by $(g^{\wedge}, \psi^{\wedge}) = (g, \psi)$ for every $\psi \in \widetilde{U}$, and where $\widetilde{\psi}(x) = \psi(-x)$, then we say that g satisfies Condition (*).

Lemma 6 For all $\varphi \in U, \varphi^{\wedge}$ vanishes in some neighbourhood of 0.

Proof Let $\varphi \in U$, and

$$\varphi(x) = \sum_{j=0}^{n} c_j \tau_{h_j} \Phi_N(x), \quad c_j \in \mathbb{C}, h_j \in \mathbb{R}^+, n \in \mathbb{N},$$

it follows by [5]

$$\varphi^{\wedge}(t) = \begin{cases} \sum_{j=0}^{n} p^{-N} c_{j} \overline{\omega}(h_{j}, t), & 0 \leq t < p^{N}, \\ 0, & t \geq p^{N}. \end{cases}$$

 $\varphi^{\wedge}(t) = \left\{ \begin{array}{ll} \sum_{j=0}^{n} p^{-N} c_{j} \overline{\omega}(h_{j}, t), & 0 \leq t < p^{N}, \\ 0, & t \geq p^{N}. \end{array} \right.$ Since $\int_{\mathbb{R}^{+}} \varphi(t) \, \mathrm{d}t = 0$ implies $\sum_{j=0}^{n} c_{j} = 0$, we conclude that $\varphi^{\wedge}(t)$ is equal to zero in a neighbor. ghbourhood of 0.

Lemma 7 Let $f \in L_{\mathbb{R}^+}^q$ and $I^{(1)}f$ exist in $L_{\mathbb{R}^+}^q$ sense. Assume that $g = I^{(1)}f$ satisfies Condition (*), then the formula $g^{\wedge} = v^{-1} f^{\wedge}$ holds in the distribution sense.

Proof Since $g = I^{(1)}f$, by definition, $||g - V_{1,n} \otimes f||_q \to 0$, $n \to \infty$. Note that strong convergence implies weak convergence, so for all $\varphi \in U$, we have

$$(g^{\wedge}-(V_{1,n} \otimes f)^{\wedge}, \varphi)=(g-V_{1,n} \otimes f, \varphi) \rightarrow 0, n \rightarrow \infty,$$

hence

$$\lim_{n\to\infty}(g^{\wedge}-(V_{1,n}\otimes f)^{\wedge},\varphi)=\lim_{n\to\infty}(g^{\wedge}-V_{1,n}^{\wedge}f,\varphi)=0,\quad\forall\varphi\in\mathbf{U}$$

and

$$\lim_{n\to\infty} (V_{1,n}^{\wedge} f, \varphi) = (g, \varphi), \quad \forall \varphi \in U.$$

 $\lim_{n\to\infty}(V_{1,n}^{^{\wedge}}f_{,}^{^{\wedge}}\varphi)=(g_{,}^{^{\wedge}}\varphi),\quad\forall\varphi\in\mathsf{U}.$ In virtue of $V_{1,n}^{^{\wedge}}\varphi\in\mathsf{L}_{\mathsf{R}}^{q}$ and g satisfies Condition (*), we can apply

$$\lim_{n\to\infty} (V_{1,n}^{\prime}, f, \psi^{\prime}) = (g, \psi^{\prime}), \quad \psi \in \widetilde{\mathbf{U}}$$

instead of

$$\lim (V_{1,n}^{\wedge} f, \varphi) = (g', \varphi), \quad \varphi \in \mathbf{U}.$$

But by Lemma 6, for all sufficient large
$$n$$
, it follows $V_{1,n}'\psi' = \frac{1}{\nu}\psi'$, this gives
$$\lim_{n\to\infty} (V_{1,n}^{\wedge}f,\psi') = \lim_{n\to\infty} (f,V_{1,n}^{\wedge}\psi') = (f,\frac{1}{\nu}\psi') = (\frac{1}{\nu}f,\psi'), \quad \psi \in \widetilde{U}.$$
 Therefore $(\frac{1}{\nu}f,\psi') = (g,\psi')$ for all $\psi \in \widetilde{U}$. Thus we have $\nu^{-1}f = g'$.

Lemma 8 Let $f \in L_R^q$. Assume that $D^{\langle 1 \rangle} f$ exists in L_R^q sense. Then we have $\lim_{m \to \infty} \int_0^p D^{\langle 1 \rangle} f(t) \, \mathrm{d}t = 0.$ Proof For any $m \in \mathbb{N}$, we have by dominated convergence theorem

$$\lim_{N\to\infty}\int_0^{p^n}\sum_{k=-N}^N p^k\sum_{j=0}^{p-1}A_jf(t\oplus jp^{-k-1})\mathrm{d}t=\int_0^{p^n}D^{(1)}f(t)\mathrm{d}t.$$

On the other hand, if N > m,

$$\int_{0}^{p^{m}} \sum_{k=-N}^{N} p^{k} \sum_{j=0}^{p-1} A_{j} f(t \oplus j p^{-k-1}) dt = \sum_{k=-N}^{N} \left\{ p^{k} \sum_{j=0}^{p-1} A_{j} \int_{0}^{p^{m}} f(t \oplus j p^{-k-1}) dt \right\}$$

$$= \sum_{k=-N}^{m-1} + \sum_{k=-m}^{N} = I_{m, N} + J_{m, N}$$

say. We assert $J_{m, N} = 0$. In fact, for $k = -m, -m+1, \dots, N, j = 0, 1, \dots, p-1$, each transform $t \rightarrow t \oplus j p^{-k-1}$ is a one-one mapping on $(0, p^m)$, saving for a denumerable set, (6), hence the integrals $\int_0^{p^n} f(t \oplus j p^{-k-1}) dt$ take the same value, and in virtue of $A_0 + A_1 + \cdots$ $+A_{p-1}=0$ [6], the conclusion follows. To estimate $I_{m,N}$, we use Hölder inequality

$$|I_{m,N}| \leq \sum_{k=-N}^{-m-1} p^k \sum_{j=0}^{p-1} |A_j| \|f\|_q p^{m/q'},$$

where q' is the conjugate index of q (q'>1). Thus

$$|I_{m,N}| \leq \|f\|_q \sum_{j=0}^{p-1} |A_j| (p-1)^{-1} p^{-m/q}.$$

Note that the right hand side is independent of N, and is $O(p^{-m/q})$, so $\lim_{m\to\infty}\lim_{N\to\infty}I_{m,N}=0$, thus $\lim_{m\to\infty}\int_0^{p^m}D^{(1)}f(t)\mathrm{d}t=0$. The Lemma is proved.

Lemma 9 Let $f,g\in L_R^q$. If $\lim_{m\to\infty}\int_0^{p^m}g(u)\mathrm{d}u=0$, and $g^{\wedge}=v^{-1}f^{\wedge}$, then $g=I^{(1)}f$.

Proof By the formula in Lemma 5

$$(V_{1,n} \oplus f)(x) - (V_{1,m} \oplus f)(x) = S(g; p^{-n}; x) - S(g; p^{-m}; x) \ a.e.$$

From Lemma 3 it follows

$$\lim_{\substack{m,\ n\to\infty\\ \mathbf{L}_{\mathbf{R}}^q,\ \text{there exists }h\in\mathbf{L}_{\mathbf{R}}^q,\ \text{such that}} \|(V_{1,n}\mathop{\Longrightarrow} f)(\circ)-(V_{1,m}\mathop{\Longrightarrow} f)(\circ)\|_q=0.$$

$$\lim_{n\to\infty} \|h(\circ) - (V_{1,n} \oplus f)(\circ)\|_q = 0,$$

and we have $h = I^{(1)} f$. Setting $h_n = V_{1,n} \otimes f$, it follows for all $\varphi = \psi^{\wedge}, \psi \in \widetilde{U}$

Thus for all sufficient large n, one has

$$(f, V_{1,n}^{\wedge}\varphi) = (f, \frac{1}{\nu}\varphi) = (\frac{1}{\nu}f^{\wedge} \varphi) = (g, \varphi).$$

But $\lim_{n \to \infty} (h_n, \varphi) = (h_n, \varphi)$, we conclude that $g = h_n$ and consequently $g = I^{(1)} f$.

Now we turn to study some relations between p-adic derivative and p-adic integral.

If $f, D^{(1)}f \in L_{\mathbb{R}^+}^q, r \in \mathbb{N}$, and f satisfies condition (*), then Theorem 2 $f = I^{\langle r \rangle} (D^{\langle r \rangle} f)$.

Proof By Theorem 1 the equality r=1, $(D^{(1)}f)^{-}=vf^{(1)}$ is valid in the distribution sence Furthermore, for all $\varphi = \psi^{\wedge}$ with $\psi \in \widetilde{U}$, we have

$$(f,\varphi) = (vf,v^{-1}\varphi) = ((D^{\langle 1 \rangle}f),v^{-1}\varphi) = (v^{-1}(D^{\langle 1 \rangle}f),\varphi),$$

hence the assumption on f implies $f = v^{-1} (D^{(1)}f)$. By Lemma 8, we get $\lim_{n \to \infty} \int_0^{p^n} D^{(1)}f(t)dt = 0$, and consequently the formula $f = I^{(1)}(D^{(1)}f)$ by applying Lemma 9.

For r>1 it can be done by induction.

Theorem 3 Let $f, g \in L_{\mathbf{R}^+}^q$, if $g = I^{(1)}f$, $r \in \mathbf{N}$, such that $\lim_{n \to \infty} \int_{0}^{p^n} g(u) du = 0$, and that g satisfies the Condition (*). Then $f = D^{(1)}(I^{(r)}f)$.

Proof We will show this formula by three steps for r=1.

First step. We prove the inequality

$$g(x) = S(g; p^m; x) + (V_{1, -m} \oplus f)(x) \quad a.e.$$
 (1)

for $m \in \mathbb{N}$. Since $g = I^{(1)} f \in L_{\mathbb{R}^+}^q$, by Lemma 7, for $v \neq 0$ $g = \frac{1}{n} f$. In view of the definition of p-adic integral $\lim_{n\to\infty} \|g(\cdot) - (V_{1,n} \oplus f)(\cdot)\|_q = 0$, there exists a subsequence $n_k \to \infty$ ∞ , such that

$$\lim_{n\to\infty} (V_{1,n_k} \bigoplus f)(x) = g(x) \quad a.e.$$
 Using the method of WFT for $n_k > m$, one has

$$(V_{1,n_{\bullet}} \oplus f)(x) = S(V_{1,n_{\bullet}} \oplus f; p^{m}; x) + (V_{1,-m} \oplus f)(x) \quad a_{\bullet}e_{\bullet}$$
 (2)

Note that $D_{p} \in L_{R}^{q'}$ for every $2 < q < \infty$, so

$$\lim_{k \to \infty} S(V_{1,n_k} \oplus f; p^m; x) = \int_0^\infty g(x \oplus u) D_{p^m}(u) du = S(g; p^m; x) \qquad a.e.$$
Taking limit in (2) we have $g(x) = S(g; p^m; x) + (V_{1,-m} \oplus f)(x) a.e.$ This is (1).

By the way, from (1) it follows

$$(D_m^{\langle 1 \rangle} g)(x) = D_m^{\langle 1 \rangle} S(g; p^m; x) + D_m^{\langle 1 \rangle} (V_{1, -m} \bigoplus f)(x) a.e. \tag{3}$$

Therefore

$$\|D_{m}^{(1)}g - f\|_{q} \leq \|D_{m}^{(1)}S(g; p^{m}; \circ) - f(\circ)\|_{q} + \|D_{m}^{(1)}(V_{1,-m} \otimes f)(\circ)\|_{q}$$
(4)

Second step. We want to prove

$$\lim_{m} \|D_{m}^{(1)}S(g; p^{m}; \circ) - f(\circ)\|_{q} = 0.$$
 (5)

It follows by the method of WFT

$$S(f; p^m; x) = \sum_{k=-\infty}^{m-1} p^k \sum_{j=0}^{p-1} A_j, S(g; p^m; x \oplus j p^{-k-1}) \ a.e.$$

Let

$$S(f, p^m; x) = \{\sum_{k=-\infty}^{-m} + \sum_{k=-m+1}^{m-1} \} p^k \sum_{j=0}^{p-1} A_j S(g; p^m; x \oplus jp^{-k-1}) \equiv J_1 + J_2$$

say. For J_1 we have

$$||J_1||_q \leq \sum_{k=-\infty}^{-m} p^k \sum_{j=0}^{p-1} |A_j| ||s(g; p^m; \circ \oplus jp^{-k-1})||_q \leq \sum_{j=0}^{p-1} |A_j| ||g||_q p^{-m+1},$$

$$-222 -$$

hence $\lim \|J_1\|_q = 0$.

On the other hand, for $J_2 = D_m^{\langle 1 \rangle} S(g; p^m; x)$, we get

$$||S(f; p^{m}; \circ) - J_{2}||_{q} = ||S(f; p^{m}; \circ) - D_{m}^{\langle 1 \rangle} S(g; p^{m}; \circ)||_{q} = ||J_{1}||_{q} \rightarrow 0, m \rightarrow \infty, (6)$$

 $\|D_{m}^{(1)}(g; p^{m}; \circ) - f(\circ)\|_{q} < \|D_{m}^{(1)}S(g; p^{m}; \circ) - S(f; p^{m}; \circ)\|_{q} + \|S(f, p^{m}; \circ) - f(\circ)\|_{q}$ so by (6) and Lemma 1, it follows

$$\lim_{m} \|D_{m}^{(1)}(g; p^{m}; \circ) - f(\circ)\|_{q} = 0.$$

 $\lim_{m\to\infty}\|D_m^{\langle 1\rangle}(g;p^m;\circ)-f(\circ)\|_q=0.$ Third step. We prove $\lim_{m\to\infty}\|D_m^{\langle 1\rangle}(V_{1;-m}\otimes f)(\circ)\|_q=0$. It is obvious $V_{1,-m}\in L^1_{\mathbb{R}^+}$, $f \in L_{\mathbb{R}^+}^q$, so that $V_{1,-m} \oplus f \in L_{\mathbb{R}^+}^{m+\infty}$, $D_m^{(1)}(V_{1,-m} \oplus f) \in L_{\mathbb{R}^+}^q$. Then by the convolution theorem and the formula of derivatives $(D_m^{(1)}(V_{1,-m} \otimes f)) = (f \otimes D_m^{(1)}V_{1,-m})$, thus by the uniqueness theorem

$$D_{m}^{\langle 1 \rangle}(V_{1,-m} \otimes f)(x) = (f \otimes D_{m}^{\langle 1 \rangle}V_{1,-m})(x) \quad a.e. \tag{7}$$

Setting $G_m(x) = (D_m^{\langle 1 \rangle} V_{1,-m})(x)$ and by Lemma 2.3 in [4], $\|V_{1,-m}\|_1 \leq K p^{-m}$, K is a constant, one can conclude

$$\begin{aligned} \|G_{m}\|_{1} &= \|\sum_{k=-(m-1)}^{m-1} p^{k} \sum_{j=0}^{p-1} A_{j} V_{1,-m}(\circ \oplus j p^{-k-1}) \|_{1} \leq (\sum_{j=0}^{p-1} |A_{j}|) \sum_{k=-(m-1)}^{m-1} p^{k} \|V_{1,-m}\|_{1} \\ &\leq \{K p^{-m} \sum_{k=-(m-1)}^{m-1} p^{k}\} \cdot \sum_{j=0}^{p-1} |A_{j}| \leq M = \text{const.} \end{aligned}$$

Therefore

$$\| f \otimes G_{m} \|_{q} \leq \| G_{m} \otimes (f - S(f; p^{k}; \circ)) \|_{q} + \| G_{m} \otimes S(f; p^{k}; \circ) \|_{q}$$

$$\leq \| G_{m} \|_{1} \| S(f, p^{k}; \circ) - f(\circ) \|_{q} + \| G_{m} \otimes S(f; p^{k}; \circ) \|_{q}.$$
(8)

The first term of the right hand side in (8) tends to 0 by Lemma 1, and the second term is 0 when m > k, thus we have $\lim_{m \to \infty} \|D_m^{(1)}(V_{1,-m} \oplus f)(\circ)\|_q = 0$, which is (7).

Now by (4), (5) and (7), we get $D^{(1)}(g=f \ a.e. \text{By hypothesis} \ g=I^{(1)}f$ it follows, $D^{(1)}(I^{(1)}f) = f$ a.e. This proves the theorem for r = 1. The general case r > 1 is then done by induction.

The following theorem shows $D^{(r)}$ is a closed operator.

Theorem 4 Let $r \in \mathbf{P}$. Denote by W, the class

 $W_r = \{ f \in L_R^{q_+} : \exists D^{(1)} f \in L_R^{q_-} \lim_{n \to \infty} \int_0^{p_n} f(t) dt = 0 \text{ and } f \text{ is with Condition } (*) \}$ Then $D^{(r)}$ is a closed linear operator over W,

Proof Let r=1, and we take f_n , f, g satisfying the following conditions:

- ii) $f, g \in L_{\mathbb{R}}^q$ and f, g are with Condition (*), and $\lim_{m \to \infty} \int_{0}^{p^m} f(t) dt = 0$,
- iii) $\lim \|f_n f\|_q = 0$, $\lim \|D^{(1)}f_n g\|_q = 0$.

Then we have to prove $f \in W$, and $g = D^{(1)} f$.

In fact, since $\lim_{n\to\infty} \|D^{(1)}f_n - g\|_q = 0$, we have for all $\varphi = \psi^{\wedge}$ with $\psi \in \widetilde{U}$ $\lim \left(\left(D^{(1)} f_n \right)^{\wedge} - R^{\wedge} \varphi \right) = 0.$

But $\int D_{-}^{\langle 1 \rangle} f_{-} = v f_{-}^{\wedge}$ one has

 $0 = \lim_{n \to \infty} ((D^{\langle 1 \rangle} f_n)^{\wedge} - g^{\wedge}, \varphi) = \lim_{n \to \infty} (\nu f_n^{\wedge} - g^{\wedge}, \varphi), \ \varphi = \psi^{\wedge}, \forall \psi \in \widetilde{U},$ therefore by ii)

$$(vf^{\wedge}, \varphi) = (g^{\wedge}, \varphi), \qquad \varphi = \psi^{\wedge}, \forall \psi \in \widetilde{\mathbf{U}},$$

which implies for these φ

$$(f^{\wedge}, vp) = (v^{-1}g^{\wedge}, vp).$$

Obviously $\{\upsilon \varphi(\upsilon), \varphi \in \mathbf{U}\}$ is dense in $\mathbf{L}_{\mathbf{R}}^q$, so $f = \upsilon^{-1} g^{\wedge}$ in the distribution sense. Then by Lemma 7, it follows $f = I^{\langle +1 \rangle} g$, thus $I^{\langle +1 \rangle} g \in \mathbf{L}_{\mathbf{R}}^q$. In virtue of Theorem 3, $D^{\langle +1 \rangle} (I^{\langle +1 \rangle} g) = g$, i.e $D^{\langle +1 \rangle} f = g$, which means $f \in \mathbf{W}_1$.

For r>1, one may verify by nduction.

References

- (1) Butzer, P.L. and Wagner, H.J., Walsh-Fourier series and the concept of a derivative, Applicable Anal., 3 (1976), 29-46.
- [2] Pal, J., On the connection between the concept of a derivative definded on the dyadic field and the Walsh-Fourier transform, Ann, Univ. Sci. Budapest Eotvos, Sect. Math. 18 (1975), 49-54.
- (3) Taibleson, M.H., Fourier Analysis on Local Fields, Math. Notes, Princeton University Press, Princeton, 1975.
- 〔4〕郑维行,苏维宜,逻辑导数与逻辑积分,数学研究与评论,1(1981),79-90。
- [5] ---, Walsh分析与逼近算子, 数学进展, 12: 2(1983),81-93.
- 〔6〕郑维行, 苏维宜, 任福贤, 沃尔什函数理论与应用, 上海科技出版社, 1983。

逻辑导数与逻辑积分(Ⅱ)*

郑维行 苏维宜 (南京大学)

摘 要

在〔4〕中我们对空间 L_{t+1}^{q} , $1 \le q \le 2$, 讨论了函数的逻辑导数与积分。例如,建立了下列公式: $D^{(1)}(I^{(1)}f) = f$, $I^{(1)}(D^{(1)}f) = f$.

但那里的方法不能用于q>2情形。本文是〔4〕的继续。对 $2 < q < \infty$ 情形,我们利用分布理论与p进群的技巧定义空间 L_{k}^{q} 的Walsh-Fourier变式(WFT)并建立有关逻辑导数与积分的某些基本定理。