Relation Word Problems*

Lin Yuchai

(Yunnan Normal University)

Let $N = \{0, 1, 2, \dots\}$ be the set of all natural numbers, and let R and S be any two (binary) relations on N. The product (referring to the relation theoretic product) of R and S is the relation T on N:

$$T = \{\langle a, b \rangle \mid (\exists c) (\langle a, c \rangle \in R \& \langle c, b \rangle \in S) \}.$$

In our paper we shall denote the product T of relations R and S by T = RS, the inverse of the relation R by R^{-1} , the product of n R's by R^n , and $(R^{-1})^n$ by R^{-n} .

The problem of deciding, for any given recursive relations R_1, \dots, R_n , S_1, \dots, S_n on N, whether or not there exist $i_1, \dots, i_m \in \{1, \dots, n\}$ such that $R_{i_1} \dots R_{i_m} = S_{i_1} \dots S_{i_m}$ is called the *corresponding relation word problem*. This problem is called the corresponding transformation word problem if the relations $R_1, \dots, R_n, S_1, \dots, S_n$ are all transformations.

Since the associative law is satisfied for the product of relations, for any given relations R_1 , R_2 , ... on N, the set $\mathfrak{C} = \{X \mid X = R_{i_1} \cdots R_{i_m} (R_i, \cdots, R_{i_m} \in \{R_1, R_2, \cdots\}, 0 \neq m \in \mathbb{N})\}$ forms a semigroup with respect to the product of relations. The semigroup is called the *relation semigroup* generated by relations R_1 , R_2 , ..., and denoted by $\mathfrak{C} = (R_1, R_2, \cdots)$. When the relations R_1 , R_2 , ... are all transformations, the set $\mathfrak{G} = \{X \mid X = R_{i_1}^{e_{i_1}} \cdots R_{i_m}^{e_{i_m}} (R_{i_1}, \cdots, R_{i_m} \in \{R_1, R_2, \cdots\}, e_{i_n} = \pm 1 (j = 1, \cdots, m), m \in \mathbb{N})\}$ forma a group with respect to the product of relations. The group is called the *transformation group* generated by the transformations R_1 , R_2 , ..., and denoted by $\mathfrak{G} = (R_1, R_2, \cdots)$.

For a given relation semigroup $\mathfrak{C} = (R_1, R_2, \cdots)$, the problem of deciding, for any two words X and Y (i.e., two elements) of \mathfrak{C} , whether or not X = Y is called the word problem for the given relation semigroup. For a given transformation group $\mathfrak{G} = (R_1, R_2, \cdots)$, the problem of deciding, for any two words X and Y of \mathfrak{G} , whether or not X = Y is called the word problem for the given transformation group.

The main results proved in this paper are as follows:

(1) The corresponding relation word problem is unsolvable.

^{*} Received Nov. 5, 1983. Recommended by Yang An zhou.

- (2) The corresponding transformation word problem is unsolvable.
- (3) There exists a relation semigroup generated by a finite number of recursive relations which has an unsolvable word problem.
- (4) There exists a transformation group generated by a finite number of recursive transformations which has an unsolvable word problem.

§ 1. Corresponding Relation Word Problem and Corresponding Transformation Word Problem

Define relations P and Q on N as follows:

 $P = \{\langle a, b \rangle \mid a \in \mathbb{N} \& b = 2a+1 \}; \quad Q = \{\langle a, b \rangle \mid a \in \mathbb{N} \& b = 2a \}.$

Then it is not difficult to show that

Lemma 1. Let $X = T_1 \cdots T_k$, $Y = U_1 \cdots U_l$, where $T_1 \cdots T_k$, U_1 , \cdots , $U_l \in \{P, Q\}$. If X = Y then k = l and $T_i = U_i$ $(i = 1, \dots, k)$.

Theorem 1. The corresponding relation word problem is unsolvable.

Proof. Let $a_1, \dots, a_n, \beta_1, \dots, \beta_n$ be any 2n words on $\{0,1\}$. For every word $a_i = x_{i_1} \dots x_{i_{r_i}}$ $(i = 1, \dots, n)$ we define a relation $R_i = T_{i_1} \dots T_{i_{r_i}}$ on N, where, for every $j = 1, \dots, r_i, T_{i_j} = P$ if $x_{i_j} = 1$ and $T_{i_j} = Q$ if $x_{i_j} = 0$. For every word β_i $(i = 1, \dots, n)$ we define a relation S_i on N in the same manner. It is clear that $R_1, \dots, R_n, S_1, \dots, S_n$ are all recursive relations.

It follows from Lemma 1 that, for any $i_1, \dots, i_m \in \{1, \dots, n\}$,

$$\alpha_{i_1} \cdots \alpha_{i_m} = \beta_{i_1} \cdots \beta_{i_m} \Leftrightarrow R_{i_1} \cdots R_{i_m} = S_{i_1} \cdots S_{i_m}$$
.

Thus our theorem follows immediatly from the unsolvability of Post Corresponding Problem.

Let $I = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ be the set of all integers. Define transformations \overline{P} and \overline{Q} on I as follows:

$$\overline{P}$$
: $a \mapsto 2a + 1$, $(a = 0, 1, \dots)$; $-(2a + 1) \mapsto -(a + 1)$, $(a = 0, 1, \dots)$; $-(2a + 2) \mapsto 2a$, $(a = 0, 1, \dots)$.

$$\overline{Q}$$
: $a \mapsto 2a$, $(a = 0, 1, \dots)$; $-(2a + 1)$, $\mapsto -(a + 1)(a = 0, 1, \dots)$; $-(2a + 2) \mapsto 2a$
+ 1, $(a = 0, 1, \dots)$.

Then it is not difficult to show that

Lemma 2. Let $X = T_1 \cdots T_k$, $Y = U_1 \cdots U_l$, where $T_1, \dots, T_k, U_1, \dots, U_l \in$

$$\{\overline{P}, \overline{Q}\}$$
. If $X = Y$ then $k = l$ and $T = U_i (i = 1, \dots, k)$.

Define an 1-1 mapping f from I onto N as follows:

$$f: a \mapsto 2a, (a = 0, 1, \dots); (a + 1) \mapsto 2a + 1, (a = 0, 1, \dots).$$

Define transformations ζ and η on N as follows:

$$\zeta = f^{-1}\overline{P}f; \quad \eta = f^{-1}\overline{Q}f.$$

Then we have

Lemma 3. Let $X = T_1 \cdots T_k$, $Y = U_1 \cdots U_l$, where $T_1, \dots, T_k, U_1, \dots, U_l \in \{\zeta, \eta\}$. If X = Y then k = l' and $T_i = U_i \ (i = 1, \dots, k)$.

Theorem 2. The corresponding transformation word problem is unsolvable. **Proof** Let $a_1, \dots, a_n, \beta_1, \dots, \beta_n$ be any 2n words on $\{0, 1\}$. For every word $a_i = X_{i_1} \cdots X_{i_{r_i}}$ $(i = 1, \dots, n)$ we define a transformation $R_i = T_{i_1} \cdots T_{i_{r_i}}$ on N, where, for every $j = 1, \dots, r_i, T_{i_j} = \zeta$ if $x_{i_j} = 1$ and $T_{i_j} = \eta$ if $x_{i_j} = 0$. For every $\beta_i (i = 1, \dots, n)$ we define a transformation S_i on N in the same manner. It is clear that $R_1, \dots, R_n, S_1, \dots, S_n$ are all recursive transformations.

It follows from Lemma 3 that, for any $i_1, \dots, i_m \in \{1, \dots, n\}$,

$$\alpha_{i_1} \cdots \alpha_{i_m} = \beta_{i_1} \cdots \beta_{i_m} \Leftrightarrow R_{i_1} \cdots R_{i_m} = S_{i_1} \cdots S_{i_m}$$
.

Thus our theorem follows immediately from the unsolvability of Post Corresponding Problem.

It is clear that Theorem 1 is a consequence of Theorem 2.

§ 2. The Word Problem for a Relation Semigroup

Let $A \subseteq N$ be any given recursively enumerable set but not recursive. By the well known Projection Theorem in mathematical logic there exists then a recursive binary relation R such that, for any $a \in N$,

$$a \in A \iff (\exists b)(\langle a,b \rangle \in R)$$
.

Define a relation S on N as follows:

$$S = \{\langle c, d \rangle \mid (\exists a, b) (c = 2a + 2 \& d = 2b + 1 \& \langle a, b \rangle \in R)\}.$$

Lemma 4. The problem of deciding, for any c = 2a + 2 ($a \in \mathbb{N}$), whether or not $\langle c, c \rangle \in SS^{-1}$ is unsolvable.

Proof. For any $a \in \mathbb{N}$, $a \in \mathbb{A} \Leftrightarrow (\exists b)(\langle a, b \rangle \in R) \Leftrightarrow (\exists d)(d = 2b + 1 & \langle 2a + 2, d \rangle \in S) \Leftrightarrow \langle 2a + 2, 2a + 2 \rangle \in SS^{-1} \Leftrightarrow \langle c, c \rangle \in SS^{-1}$.

Hence our lemma follows from the fact that A'is not recursive.

For every $c = 2a + 2(a \in \mathbb{N})$ we define a relation S_c on \mathbb{N} as follows:

$$S_c = S \cup \{\langle c, 0 \rangle\}$$
.

Lemma 5. For any c=2a+2 $(a \in \mathbb{N})$, $\langle c,c \rangle \in SS^{-1} \iff SS^{-1} = S_c S_c^{-1}$.

Proof. It is clear that $SS^{-1} \subseteq S_c S_c^{-1}$, $\langle c, c \rangle \in S_c S_c^{-1}$, and $S_c S_c^{-1} - SS^{-1}$ is either the empty relation ϕ or $\{\langle c, c \rangle\}$.

Hence, if $\langle c,c\rangle \in SS^{-1}$ then $SS^{-1}=S_cS_c^{-1}$; and if $\langle c,c\rangle \in SS^{-1}$ then $SS^{-1}\neq S_cS_c^{-1}$. Thus our lemma holds.

So far it is not difficult to see that the word problem for the relation semogroup $\mathfrak{C} = (S, S^{-1}, S_2, S_2^{-1}, S_4, S_4^{-1}, \cdots)$ is unsolvable. Hence, in order to show that there exists a relation semigroup generated by a finite number of recursive relations which has an unsolvable word problem, it is sufficient

to show that there exists a finite number of recursive relations such that, for any c = 2a + 2 ($a \in \mathbb{N}$), S_c can be generated by them.

Define relations V, W_0 , W and S_0 on N as follows:

$$V = \{\langle a, b \rangle \mid \langle a, b \rangle = \langle 0, 3 \rangle \quad \forall \quad (\exists d)(a = 2d + 2 \& b = 2d) \quad \forall \quad (\exists d)(a = 2d + 3 \& b = 2d + 5)\};$$

$$W_0 = \{ \langle a, b \rangle \mid \langle a, b \rangle = \langle 0, 0 \rangle \text{ ($\exists d$)} (a = 2d \& b = 2d + 2) \text{ ($\exists d$)} (a = 2d + 3 \& b = 2d + 1) \};$$

$$W = W(| \{\langle 1, 2 \rangle \} - \{\langle 0, 2 \rangle \}; \quad S_0 = S \cup \{\langle 0, 0 \rangle \}.$$

Lemma 6. For any $c = 2a + 2(a \in N)$, $S_c = V^{a+1}W_0W^aS_0$.

Proof. Obviously

 $V^{a+1}W_0W^a = \{\langle r,s\rangle \mid \langle r,s\rangle = \langle 0,1\rangle \quad (r\neq 0 \& r\neq 1 \& r=s)\}.$ Hence $V^{a+1}W_0W^aS_0 = S_c$

Theorem 3. There exists a relation semigroup g generated by a finite number of recursive relations which has an unsolvable word problem.

Proof. By Lemma 5 and 6, for any c = 2a + 2 ($a \in \mathbb{N}$),

$$\langle c,c\rangle_{\varepsilon}SS^{-1} \Leftrightarrow SS^{-1} = V^{a+1}W_0W^aS_0S_0^{-1}W^{-a}W_0^{-1}W^{-(a+1)}$$
.

Hence, taking $\mathfrak{G}=(S,S^{-1},S_0,S_0^{-1},V,V^{-1},W_0,W_0^{-1},W,W^{-1})$, by Lemma 4, \mathfrak{G} has an unsolvable word problem. It is clear that S,S_0,V,W_0,W are all recursive, and then $S^{-1},S_0^{-1},V^{-1},W_0^{-1},W^{-1}$ are all recursive, too. Thus our theorem holds.

Corollary I. The problem of deciding, for any two recursive relations R and S on N, whether or not R = S is unsolvable.

§ 3. The Word Problem for a Transformation Group

Let $A \subseteq N$ be any given recursively enumerable set but not recursive, and let $0 \in A$. And let φ be an total recursive function such that $rang \varphi = A$.

Number all ordered pairs $\langle m, n \rangle$ on N with natura' numbers 0, 1, 2, ... by any recursive method, and denote the code of the ordered pair $\langle m, n \rangle$ by $\langle m, n \rangle$ still. For example, we may take the code of the ordered pair $\langle m, n \rangle$ to be $\langle m, n \rangle = \frac{1}{2} (m^2 + 2mn + n^2 + 3m + n)$.

Also number all ordered pairs $\langle m, n \rangle$ $(n \neq 0)$ on N with odd numbers 1, 3, 5, ... by any recursive method, and denote the code of the pair $\langle m, n \rangle$ by [m, n]. For example, we may take the code of the ordered pair $\langle m, n \rangle$ to be $[m, n] = 2^{n+1}m + 2^n - 1$.

Define a transformation ψ on N as follows:

$$\psi$$
: $2b \mapsto \langle b, \varphi(b) \rangle$, $(b = 0, 1, \cdots)$; $(m, \varphi(m)) \mapsto \langle m, 0 \rangle$, $(m = 0, 1, \cdots)$; $(m, n) \mapsto \langle m, n \rangle$, if $\varphi(m) \neq n$, $(m = 0, 1, \cdots; n = 1, 2, \cdots)$.

For every $0 \neq c \in \mathbb{N}$ define a transformation ρ_c on N as follows:

$$\rho_c: [2k, c] \rightarrow [2k+1, c], (k=0,1,\cdots); [2k+1, c] \rightarrow [2k, c], (k=0,1,\cdots);$$
 $a \rightarrow a$, if $a \neq [m, c]$ $(m=0,1,\cdots)$, $(a=0,1,\cdots)$.

For every $0 \pm c \in \mathbb{N}$ define a transformation σ_c on N as follows:

$$\sigma_c: \langle 2k, c \rangle \rightarrow \langle 2k+1, c \rangle, \quad (k=0,1,\cdots): \langle 2k+1, c \rangle \rightarrow \langle 2k, c \rangle, \quad (k=0,1,\cdots);$$

 $\langle m, n \rangle \rightarrow \langle m, n \rangle, \quad \text{if} \quad n \neq c, \quad (m, n=0,1,\cdots).$

Lemma 7. For any $0 \neq c \in \mathbb{N}$, $c \in \mathbb{A} \iff \psi \sigma_e \psi^{-1} \neq \rho_c$.

Proof. If $c \in A$ then there exists an $a \in N$ such that $\varphi(a) = c$. Therefore

$$(2a) \psi \sigma_c \psi^{-1} = (\langle a, c \rangle) \sigma_c \psi^{-1} = \begin{cases} (\langle 2k+1, c \rangle) \psi^{-1}, & \text{if } a = 2k; \\ (\langle 2k, c \rangle) \psi^{-1}, & \text{if } a = 2k+1 \end{cases} \neq 2a.$$

 $(2a)\rho_c = 2a$.

Hence $\psi \sigma_c \psi^{-1} \pm \rho_c$.

If $c \in A$, then for any $a \in N$, $\varphi(a) \neq c$. Therefore

(1) If
$$a$$
 is even, let $a = 2b$ $(b = 0, 1, \cdots)$, then
$$(a)\psi\sigma_c\psi^{-1} = (2b)\psi\sigma_c\psi^{-1} = (\langle b, \varphi(b) \rangle)\sigma_c\psi^{-1} = (\langle b, \psi(b) \rangle)\psi^{-1} = 2b = a.$$

$$(a)\rho_c = (2b)\rho_c = 2b = a.$$

Hence $(a) \psi \sigma_c \psi^{-1} = (a) \rho_c$ in this case.

(2) If a is odd, let $a = (m, n)(m = 0, 1, \dots; n = 1, 2, \dots)$, then 1^c if $n \neq c$, then

$$(a) \psi \sigma_c \psi^{-1} = ((m, n)) \psi \sigma_c \psi^{-1} = ((m, p)) \sigma_c \psi^{-1} (p \neq c) = ((m, p)) \psi^{-1} = (m, n) = a,$$

$$(a) \rho_c = ((m, n)) \rho_c = (m, n) = a;$$

 2° if n=c, then

$$(a)\psi\sigma_{c}\psi^{-1} = ([m, c])\psi_{\sigma_{c}}\psi^{-1} = (\langle m, c \rangle)\sigma_{c}\psi^{-1}$$

$$= \begin{cases} (\langle 2k+1, c \rangle)\psi^{-1}, & \text{if } m=2k; \\ (\langle 2k, c \rangle)\psi^{-1}, & \text{if } m=2k+1 \end{cases} = \begin{cases} [2k+1, c], & \text{if } m=2k; \\ [2k, c], & \text{if } m=2k+1, \end{cases}$$

$$(a)\rho_{c} = ([m, c])\rho_{c} = \begin{cases} [2k+1, c], & \text{if } m=2k; \\ [2k, c], & \text{if } m=2k+1. \end{cases}$$

Hence $(a) \psi \sigma_c \psi^{-1} = (a) \rho_c$ in this case.

Therefore $\psi \sigma_c \psi^{-1} = \rho_c$.

So far it is not difficult to see that the word problem for the transformation group $\mathfrak{G}=(\psi,\,\sigma_1\,,\,\rho_1\,,\,\sigma_2\,,\,\rho_2\,,\,\cdots)$ is unsolvable. Hence, in order to show that there exists a transformation group generated by a finite number of recursive transformations which has an unsolvable problem, it is sufficient to show that there exists a finite number of recursive transformations such that, for any $0 \neq c \in \mathbb{N}$, both σ_c and ρ_c can be generated by them.

Define transformations σ and τ on N as follows:

$$\sigma = \sigma_1;$$

$$\tau: \langle m, 2l+2 \rangle \mapsto \langle m, 2l+4 \rangle, (m, l=0, 1, \cdots); \langle m, 2l+3 \rangle \mapsto \langle m, 2l+1 \rangle, (m, l=0, 1, \cdots);$$

 $\langle m, 1 \rangle \rightarrow \langle m, 2 \rangle$, $(m = 0, 1, \cdots)$; $\langle m, 0 \rangle \mapsto \langle m, 0 \rangle$, $(m = 0, 1, \cdots)$.

Then we have

Lemma 8. (i) $\sigma_{2l+2} = \tilde{\tau}^{-(l+1)} \sigma \tau^{l-1}$, $(l=0,1,\cdots)$; (ii) $\sigma_{2l+1} = \tau^l \sigma \tau^{-l}$, $(l=0,1,\cdots)$. Define transformations ρ and π on N as follows:

$$\rho = \rho_1$$
.

 $\pi: [m, 2l+2] \rightarrow [m, 2l+4], (m, l=0,1,\cdots); [m,2l+3] \mapsto [m, 2l+1], (m, l=0,1,\cdots); [m,1] \mapsto [m,2], (m=0,1,\cdots); [b\mapsto 2b, (b=0,1,\cdots)].$

Then we have

Lemma 9. (i) $\rho_{2l+2} = \pi^{-(l+1)} \rho \pi^{l-1}$, $(l=0,1,\cdots)$; (ii) $\rho_{2l+1} = \pi^l \rho \pi^{-l}$, $(l=0,1,\cdots)$.

Theorem 4. There exists a transformation group & generated by a finite number of recursive transformations which has an unsolvable word problem.

Proof. By Lemma 7, 8, and 9, for any $0 \neq c \in \mathbb{N}$,

$$c \in A \iff (\exists l)(c = 2l + 2 \& \psi \tau^{-(l+1)} \sigma \tau^{l+1} \psi^{-1} \neq \pi^{-(l+1)} \rho \pi^{l+1} e^{-(l+1)} \rho \pi^{l+1} e^{-(l+1)}$$

Take $\mathfrak{G} = (\psi, \sigma, \tau, \rho, \pi)$, then \mathfrak{G} has an unsolvable word problem. Clearly ψ , σ, τ, ρ, π are all recursive transformations on N. Hence our theorem holds.

Corollary 2. There exists a semigroup & generated by a finite number of recursive transformations which has an unsolvable word problem.

Obviously Theorem 3 is a consequence of Corollary 2 and therefore of Theorem 4.

Corollary 3. The problem of deciding, for any two recursive transformations ξ_1 and ξ_2 , whether or not $\xi_1 = \xi_2$ is unsolvable.

Corollary 4. The problem of deciding, for any two total recursive functions, φ_1 and φ_2 whether or not $\varphi_1 = \varphi_2$ is unsolvable.

References

- [1] W. W. Boone, F. B. Cannonito and R. C. Lyndon, Word Problems, North-Holland, 1973.
- [2] J. R. Shoenfield, Mathematical logic, Appendix: The Word Problem, Addison-wesley, 1969.
- [3] Lin Yucai, J. Math. Res & Exposition, Vol. 5, No. 4, 97--100, 1985
- [4] H. Rogers, Jr., Theory of Recursive Fuctions and Effective Computability, McGraw-Hill, 1967.