Complete Totally Real Submanifolds with Parallel Mean Curvature*

Shen Yi-Bing (沈一兵)
(Hangzhou University)

(Dedicated to Professor Bai Zheng-Guo on the Occasion of his 70-th Birth-day)

i. Introduction

A submanifold M in a Kaehler manifold \overline{M} is said to be totally real if every tangent space of M is mapped into its normal space by the complex structure of M. Some fundamental properties of totally real submanifolds can be found in (1), (2). Let σ be the second fundamental form of M. The mean curvature η of M is defined by $\eta = \operatorname{tr} \sigma$, and M is called a submanifold with parallel mean curvature if either $\eta = 0$ or $\|\eta\| = \operatorname{constant} \pm 0$ and $\eta/\|\eta\|$ is parallel in the normal bundle over M. M is said to be pseudo-umbilical if it is umbilical with respect to the normal direction of η_*

It is interesting to study totally real submanifolds in the complex number space C^n with parallel meal curvature, and some classifications of such compact totally real submanifolds have been obtained in [1], [2]. In this paper, by employing the generalized maximum principle, we shall prove the following

Theorem 1 Let M be an $n(\geqslant 2)$ -dimensional, non-compact, complete totally real submanifold in \mathbb{C}^n with parallel mean curvature. If the second fundamental form σ of M satisfies

$$\|\sigma\|^2 \le \|\operatorname{tr} \sigma\|^2 / (n-1),$$
 (1)

then M must be a flat submanifold which is either R^n or a product $S^1 \times R^{n-1}$

The proof of Theorem 1 is based on the following

Theorem 2. Let M be an $n(\geqslant 3)$ dimensional, non-compact, complete totally real submanifold in C^n with nonzero parallel mea curvature. If the inequality (1) holds, then either M is pseudo-umbilical or $\|\sigma'\|^2 = \|\operatorname{tr}\sigma\|^2/(n-1)$, where σ' is the second fundamental form of M with respect to the normal direction of η_*

Throughout this paper, all manifolds considered are smooth and connected, and the following ranges of indices will be used:

^{*} Received May16,1984. Projects supported by the Science Fund of the Chinese Academy of Sciences.

$$A, B, C, \ldots = 1, 2, \dots, n, 1^*, \dots, n^*; i, j, k, \dots = 1, \dots, n.$$

2. Preliminaries

Let M be an n-dimensional totally real submanifold in the complex n-space C^n with the complex structure J. we choose a local field of orthonormal frames $\{e_A\}$ in C^n such that, restricted to M, $\{e_i\}$ are tangent to M. Let $\{\omega_A\}$ and $\{\omega_{AB}\}$ be the field of dual frames of $\{e_A\}$ and the connection forms, respectively. Restricting those forms to M, we have (cf.[1]) and [3]

$$\begin{aligned} \omega_{k^*} &= 0 , \qquad \omega_{k^*i} &= \Sigma h_{ij}^{k^*} \omega_j , \qquad h_{ij}^{k^*} &= h_{ji}^{k^*} \\ \mathrm{d}\omega_{ij} &= -\Sigma \omega_{ik} \wedge \omega_{kj} + \frac{1}{2} \Sigma \mathbf{R}_{ijkl} \omega_k \wedge \omega_l , \end{aligned}$$
 (2)

$$\mathbf{R}_{ij\kappa l} = \Sigma (h_{ik}^{m^*} h_{jl}^{m^*} - h_{il}^{m^*} h_{jk}^{m^*}) .$$

$$\mathrm{d}\omega_{k^*l^*} = -\Sigma\omega_{k^*j} \wedge \omega_{j^*l^*} + \frac{1}{2}\Sigma R_{klij}\omega_i \wedge \omega_j ,$$

$$R_{k^*l^*ij} = \Sigma \left(h_{im}^{h^*} h_{jm}^{l^*} - h_{im}^{l^*} h_{jm}^{k^*} \right), \tag{4}$$

$$\sigma = \Sigma h_{ij}^{k^*} \omega_i \otimes \omega_j \otimes e_{k^*} \quad , \tag{5}$$

$$\eta = \text{tr}\sigma = \Sigma(\text{tr } H^{k^*})e_{k^*}, \qquad H^{k^*} = (h_{ij}^{k^*}).$$
(6)

From (3), (5) and (6) the scalar curvature ρ of M is

$$\rho = H^2 - \|\sigma\|^2, \text{ where } H^2 \frac{\det \cdot}{\|\eta\|^2}. \tag{7}$$

If $\eta \neq 0$, we can choose e_{i^*} in such a way that its direction coincides with that of η . Then

$$\operatorname{tr} H^{j^*} = H$$
 , $\operatorname{tr} H^{j^*} = 0$ $(j \neq 1)$. (8)

By virtue of (3), (7) and (8), we have

Lemma 1 Let M be an *n*-dimensional totally real submanifold in \mathbb{C}^n . If $\rho \geqslant (n-2) \|\sigma\|^2 + 2(n-1)c$ at a point $x \in M$ for some real number c, then the sectional curvatures of M at the point x are $\geqslant c$. The proof of this lemma is completely similar to that of [4], and is therefore omitted.

On putting

$$\mu = \sum_{i,j} \left(h_{ij}^{i^*} - \frac{H}{n} \delta_{ij} \right) \omega_i \otimes \omega_j \otimes e_{1^*}, \quad \tau = \sum_{\substack{m \neq 1 \\ i,j}} h_{ij}^{i^*} \omega_i \otimes \omega_j \otimes e_{m^*}, \tag{9}$$

we have

$$\operatorname{tr} \mu = 0$$
 , $\|\mu\|^2 = \|\sigma'\|^2 - \frac{H^2}{n}$, $\|\sigma'\|^2 = \operatorname{tr}(H^{1^{\bullet}})^2$, (10)

$$\operatorname{tr} \tau = 0$$
, $\|\tau\|^2 = \sum_{m \neq 1} \operatorname{tr}(H^{m^*})^2$, $\|\sigma\|^2 = \|\mu\|^2 + \|\tau\|^2 + H^2/n$, (11)

from which it may be seen that $\|\tau\|^2$ as wellas $\|\mu\|^2$ is independent of the choice of

the frames and is a globally defined function on M. From now on we choose the local frames $\{e_A\}$ in C^n such that $e_{i^*} = Je_i$ and $e_{1^*} = \eta/\|\eta\|$ if $\eta \neq 0$. Then, by (2) we have (cf. [1])

$$h_{ij}^{k^*} = h_{ji}^{k^*} = h_{kj}^{i^*} = h_{ik}^{i^*} \quad . \tag{12}$$

From (8), (10) and (12) one can easily see the following

Lemma 2 M is pseudo-umbilical iff $\|\mu\|^2 = 0$, and M is totally geodesic iff it is pseudo-umbilical and $\|\tau\|^2 = 0$.

Now assume that $\eta = He_{1^*}$ is parallel, i.e., H = constant and $\omega_{1^*k^*} = 0$. Using the same calculation as in (3), by means of (3), (4) and (8) we can get

$$\frac{1}{2} \triangle (\|\mu\|^2) = \|D\mu\|^2 - (\operatorname{tr}(H^{1^{\bullet}})^2)^2 + H\operatorname{tr}(H^{1^{\bullet}})^3 - \sum_{k \neq 1} (\operatorname{tr}(H^{k^{\bullet}}H^{1^{\bullet}}))^2, \qquad (13)$$

$$\frac{1}{2} \triangle (\|\tau\|^2) = \|D\tau\|^2 + \sum_{i,j\neq i} \{ \operatorname{tr}(H^{i^*}H^{j^*} - H^{j^*}H^{i^*})^2 - (\operatorname{tr}(H^{i^*}H^{j^*}))^2 \} + \frac{H^2}{n} \|\tau\|^2 , \qquad (14)$$

where D denotes the generalized covariant differentiation and Δ the Laplacian.

The following generalized maximum principle which is due to Yau, S.T.-Cheng, S.Y.-Motomiya, M. can be found in [5].

Lemma 3 Let M be a complete Riemannian manifold with Ricci curvature bounded below, and f a C^2 -function bounded above on M. Then for any $\varepsilon > 0$, there exists a point $x \in M$ such that at x

- (i) $\sup f \varepsilon < f(x)$,
- (ii) $|\operatorname{grad} f|(x) < \varepsilon$,
- (iii) $\Delta f(x) < \varepsilon$.

Furthermore, if f has no maximum, then there exists a sequence of positive numbers $\{\varepsilon_{\nu}\}$ such that $\varepsilon_{\nu} \rightarrow 0 (\nu \rightarrow \infty)$, and for all ν , (i) may be replaced by

(i')
$$\sup f - \varepsilon_v < f(x) < \sup f - \frac{1}{2} \varepsilon_v$$
.

3. The Proof of Theorem 2.

For the nonzero mean curvature vector $\eta = He_{1}$, we shall start with the formula (13). By Schwarz inequality, it follows from (8) and (10) that

$$\sum_{k \neq 1} [\operatorname{tr}(H^{k^*}H^{l^*})]^2 = \sum_{k \neq 1} \left\{ \sum_{i,j} h_{ij}^{k^*} (h_{ij}^{k^*} - \frac{H}{n} \delta_{ij}) \right\}^2 < \|\mu\|^2 \|\tau\|^2.$$
 (15)

By repeating the same calculations as Okumura, M. in (6), one can get from (13),(15),(11) and (1) that

$$\frac{1}{2} \Delta(\|\mu\|^{2}) > \|D\mu\|^{2} + \|\mu\|^{2} \left\{ \frac{H^{2}}{n} - \frac{n-2}{\sqrt{n(n-1)}} \|H\| \cdot \|\mu\| - \|\mu\|^{2} - \|\tau\|^{2} \right\}
> \frac{n-2}{\sqrt{n(n-1)}} \|H\| \cdot \|\mu\|^{2} \left\{ \frac{\|H\|}{\sqrt{n(n-1)}} - \|\mu\| \right\} .$$
(16)

Since (1) implies that

$$\|\mu\|^2 < \|\sigma\|^2 - \frac{H}{n} < H^2/n(n-1)$$
 (17)

and, by (1) and (7) we deduce $\rho > (n-2) \| \sigma \|^2$, and hence by Lemma 1, the sectional curvatures of M are bounded below from 0, we can apply Lemma 3, and from (16) and (17) conclude that either $\| \mu \|^2 = 0$, i.e., by Lemma 2. M is pseudo-umbilical, or

$$\sup \|\mu\| = |H|/\sqrt{n(n-1)} . \tag{18}$$

If $\|\mu\|^2$ attains its maximum at a point of M, then by using Hopf's well-known maximum principle we see from (16) and (17) that $\|\mu\|^2 = \text{constant}$ and hence $\|\mu\|^2 = H^2/n(n-1)$ on M everywhere, i.e., $\|\sigma'\|^2 = \|\text{tr}\sigma\|^2/(n-1)$ by (10).

Now assume $\|\mu\|^2$ has no maximum on M, we prove that it is impossible. In fact, from Lemma 3 it follows that, for any natural number ν , there exists a point $x_0 \in M$ such that, by (18) and (16),

$$\frac{H^2}{n(n-1)} - \frac{1}{\nu} < \|\mu\|^2(x_{\nu}) < \frac{H^2}{n(n-1)} - \frac{1}{2\nu}$$
(19)

and

$$\frac{n-2}{\sqrt{n(n-1)}} \|H\| \cdot \|\mu\|^2(x_v) \left\{ \frac{H}{\sqrt{n(n-1)}} - \|\mu\|(x_v) \right\} < \frac{1}{2v} . \tag{20}$$

From (19) we get

$$\frac{1}{2\nu(|H|/\sqrt{n(n-1)} + ||\mu||(x_v))} < \frac{|H|}{\sqrt{n(n-1)}} - ||\mu||(x_v)$$

and thus (20) becomes

$$\frac{n-2}{\sqrt{n(n-1)}} |H| \cdot ||\mu||^2(x_v) < \frac{|H|}{\sqrt{n(n-1)}} + ||\mu||(x_v)$$

ŌΓ

$$\|\mu\|^{2}(x,) - \frac{\sqrt{n(n-1)}}{(n-2)|H|} \|\mu\|(x,) - \frac{1}{n-2} < 0.$$
 (21)

Since $\|\mu\|(x_{\nu}) > 0$, (21) yields

$$\|\mu\|(x_n) < (\sqrt{n(n-1)} + \sqrt{n(n-1) + 4(n-2)H^2})/2(n-2)|H|,$$

and thus

$$\sup \|\mu\| \leq (\sqrt{n(n-1)} + \sqrt{n(n-1) + 4(n-2)H^2})/2(n-2)\|H\|,$$

from which together with (18) it follows that

$$2(n-2)H^2 - n(n-1) < \sqrt{n^2(n-1)^2 + 4n(n-1)(n-2)H^2} .$$

In view of $H \neq 0$, we have then

$$H^2 \leqslant 2n(n-1)/(n-2)$$
. (22)

We now consider a homothetic transformation # in C^n which is defined by $\omega_A = \lambda \omega_A$, where λ is an arbitrary positive real number. Then, by the structure

equations, we have $\widetilde{\omega}_{AB} = \omega_{AB}$. Thus, it is easy to see that the image $\widetilde{M} = \mathcal{H}(M)$ satisfies the same conditions as M and $\widetilde{H}^2 = H^2/\lambda^2$, where \widetilde{H} is the corresponding quantity for \widetilde{M} . Then we must have, as (22) above,

$$H^2 = \lambda^2 \overline{H^2} < 2\lambda^2 n(n-1)/(n-2),$$

which is evidently absurd for $\lambda < \sqrt{(n-2)H^2/2(n-1)n}$. This completes the proof of Theorem 2.

4. The Proof of Theorem 1.

First of all, we note that $\|\operatorname{tr}\sigma\|^2 = H^2 = \text{comstant}$ under the hypothesis of Theorem 1. Thus, if $\eta = 0$, then (1) implies $\|\sigma\|^2 = 0$ on M everywhere, i.e., M is a totally geodesic \mathbb{R}^n in \mathbb{C}^n . So from now on we assume $\eta \neq 0$ on M.

If n > 3, by Theorem 2 we have to consider two cases.

Case (I): M is pseudo-umbilical, i.e., $\|\mu\|^2 = 0$ everywhere. Using the following well-known estimate (cf. [3], § 7)

$$\sum_{i,j\neq 1} \{ \operatorname{tr}(H^{i^*}H^{j^*} - H^{j^*}H^{i^*})^2 - (\operatorname{tr}(H^{i^*}H^{j^*}))^2 \} > - (2 - \frac{1}{n-1}) \|\tau\|^4,$$

we have from (14)

$$\frac{1}{2}\Delta(\|\tau\|^2) > (2 - \frac{1}{n-1})\|\tau\|^2 \left\{ \frac{n-1}{n(2n-3)} H^2 - \|\tau\|^2 \right\} . \tag{23}$$

The condition (1) implies that $\|\tau\|^2 (< \|\sigma\|^2)$ is bounded above and the sectional curvatures of M are bounded below from 0 (Lemma 1). Applying the assertion (iii) of Lemma 3, (23) gives rise to either $\|\tau\|^2 = 0$ or

$$\sup \|\tau\|^2 > (n-1)H^2/n(2n-3) . \tag{24}$$

However, by virtue of (11) and the fact that $\|\mu\|^2 = 0$, it follows from (1) that $\|\tau\|^2 < H^2/n(n-1)$, which contradicts (24) for n > 3. Hence, $\|\tau\|^2 = 0$ and, by Lemma 2, M is a totally geodesic \mathbb{R}^n in \mathbb{C}^n .

Case (||): $\|\sigma'\|^2 = \|\operatorname{tr}\sigma\|^2/(n-1)$, then by (10), $\|\mu\|^2 = H^2/n(n-1)$ everywhere. In this case, from (11) and (1) we get

$$\|\tau\|^2 + H^2/n(n-1) = \|\sigma\|^2 - H^2/n < H^2/n(n-1)$$
,

which implies $\|\tau\|^2 = 0$ on M everywhere. Thus, $h_{ij}^{k^*} = 0$ $(k \neq 1)$ and, by (12), $h_{jk}^{k^*} = 0$ except j = k = 1, from which it follows that

$$h_{11}^{1^*} = tr(H^{1^*}) = H = constant$$
.

If $h_{11}^{1*}=0$, M is totally geodesic. Since $\|\sigma\|^2=H^2/(n-1)$, by an analogy to the proof of Theorem 4 in (2), $M=S^1\times R^{n-1}$, where S^1 is a circle with the radius $1/\|H\|$ in C^1 .

Finally, we consider the case that n=2. By Lemma 1, the condition (1) guarantees that the Gauss curvature of M is nonnegative. If M is viewed as a surface in \mathbb{R}^4 with parallel mean curvature, then Hoffman's theorem (cf. [7])

says that M is either R^2 or $S^1 \times R^1$ because M is non-compact. Therefore, Theorem 1 is proved completely.

References

- [1] Chen, B.Y.& Ogiue, K., On totally real submanifolds, Thans. A.M.S., 193(1974), 257-266.
- [2] Chen, B.Y., Houh, C.S.&Lue. H.S., Totally real submanifolds, J.Diff.Geom., 12 (1977), 473-480.
- [3] Yau, S.T., Submanifolds with constant mean curvature I, [1, Amer. J. Math. 96 (1974), 346 366; 97 (1975), 76 100.
- [4] Chen, B.Y.&Okumura. M., Scalar curvature, inequality and submanifold, Proc. A.M.S., 38 (1973), 605 608.
- [5] Motomiya, K., On functions which satisfy some differtial inequalities on Riemannian manifolds, Nagoya Math. J., 81(1981), 57-72.
- [6] Okumura, M., Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. Math. J., 96(1974), 207-213.
- [7] Hoffman, D.A., Surfaces in constant curvature manifolds with parallel mean curvature vector field, Bull.A.M.S., 78 (1972), 247 250.