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i. Introduction

A submanifold M in a Kaehler manifoid M is said to be totally real if eve-
ry tangent space of M is mapped into its ncrmai space by the complex struc-—
ture of M. Some fundamental properties of totally real submanifolds can be
found in (13, [ 2]. Let 0 be the second fundamental form of M. The mean
curvature » of M is defined by n» =tr ¢ , and M is called a submanifold with
parallel mean curvature if either » = 0 or | »n |=constantx0 and n/ |7 |
is parallel in the normal bundle over M. M is said to be pseudo-umbilical if it
is umbilical with respect to the normal direction of y,

it is interesting to study totally real submanifolds in the complex number
space C" with paraliel meal curvature, and some classifications of such compact
totally reai submanifolds have been obtained in [ 13, [ 2] . In this paper ,
by employing the generalized maximum principle, we shall prove the following

Theorem | let M be an n( > 2) - dimensional. non-compact, compleie
totally real submanifold in " with parallel mean curvature, If the second
fundamental form ¢ of M satisfies

lolP<ltr o

Yin- 1), (1)
then M must be a flat submanifold which is either R” or a producit S'~R
The proof of Theorem 1 is based on the following
Theorem 2. let Mbe an n(223) dimensional, non-compact, compiete totally
real submanifold in C" with nonzero parallel mea curvature. If the inequality
( 1) holds, thea cither M is pseudo -umbilical or [o’ [P =]tre|?/(n- 1), where
o’ is the second fundamental form of M with respect to the normal direction of 7.
Throughout this paper, all manifolds considered are smooth and connected.

and the following ranges of indices will be used:
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A’ B, C, e e . = 1,2’ cu.,n,l*’ -ou’n*;i’j’k’oo-: 1’--0’[1.

2. Preliminaries

Let M be an n-dimensional totally real submanifold in the complex n-space
C" with the complex structure J. we choose a local field of orthonormal frames
te i in C7 such that, restricted to M, {e;} are tangent to M. Let {w,} and
{w4) be the field of dual frames of {e, and the connection forms, respectiv—
ely. Restricting those forms to M, we have (¢f.( 13 and [ 3))
W= 0, wer = Shho, RS =hS . (2)

—_ A 1 2
do;; = — Loy oy + 5 LR e Ny,

2
Ri}x{ = Z(h;'l': ’;/*_ h:"’lﬂ ;"/:) .

dog =~ Loy, "wppet %—ZR,( 19N\,
Rie iy = £ Chlphlm = Wil : (4)
o:th;wi@)wj@ek- , (5)
n=tro=X(tr Hk')e,g, H"‘Z(hf;) . (6)
From (3),(5) and (6 ) the scalar curvature p of M is
p=H*-|o?, where H L] 4| . (7)

If 0, we can choose ey in such a way that its direction coincides with

that of ».Then
; twH =H , uH =0 (j#1) . (8)

By virtue of (3),(7) and (8), we have

Lemma | Let M be an x-dimensional totally real submanifoid in C". If
p>(n- 2)o*+2(n— 1)e at a point xéM for some real number ¢, then the
sectional curvatures of M at the point x are >c. The proof of this lemma is
completely similar to that of T 4 ], and is therefore omitted.

On putting

- r_H .
H= ,Z(hij _7(3!'1)0):‘@‘01& e, IT= Zhir wi@‘”j@‘?m" (9
Ly J mil
i
we have
» H? 2 *. 2
tru=0 , ol =No 125, lo" |2 =1trca? (o
trr= 0, Il = ZucH™?
m=£1
AN 178 R B3 R e At (1
from which it may be secen that m.ias wellas {m ;[ 18 independent ot the choice of
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the frames and is a giobally defined function on M. From now on we choose
the local frames {e,} in C" such that es=Je; and er=#5/|n| if 0. Then, by
(2) we have (cf. (1]
K= RS =R =hh (i2)

From (8 ),(10) and (12) one can easily see the following

Lamma 2 M is pseudo-umbilical iff ju|>= 0, and M is totally geodesic
iff it is pseudo-umbilical and ||z|*= 0.

Now assume that 7= Hey is parallel,i.e., H =constant and @¢+= 0. Using

the sanie calculation as in {3 ), by means of (3),(4) and (8) we can get

S Ak Py = I Du - eI + Hawe ('™ - T HD I (13)
k1

* » aw o y 2
Ladey=Ipef+ Tt s -'H’H')Z—[tr(H'H’))z}Jr!:— I, (14)
1

i
where D denotes the generalized covariant differentiation and 4 the Laplacian.

The following generalized maximum principle which is due to Yau, S.T. -
Cheng, S.Y. -Motomiya, M. can be found in [[5 J.

Lemma 3 Let M be a complete Riemannian manifold with Ricci curvat—
ure bounded below, and f a C*-function bounded above on M. Then for any
&> 0, there exists a point xc¢ M such that at x

(i) supf-ef(x),

(ii) |gradf| (x)<e,

(i) 4f(x)H<e.

Furthermore, if f has no maximum, bthen there exists a sequence of positive
numbers {&,) such that &—+0(v—>o0), and for all v, (i) may be replaced by

i’ supf—e,«/;ﬁf(x)<supf—-%e,.
3. The Proof of Theorem 2.

For the nonzero mean curvature vector n= He;, we shall start with the for-

muia (13). By Schwarz inequality, it follows from (8 ) and (10) that

e CHEC BT = hkj‘(hl(c’_ﬁdi, 2 a2, y
S Hn = D DR - 10} < Ll as

By repeating the same calculations as Okumura, M. in { 6 ], one can get from
(13),(15),(11) and ( 1) that

. H* -
gl Dl {5 - == 1

ul=lul? -1}

Jr(n—1)
n-—2 2 Hl
—_— | H | - — .
Ja(n—1) | “l { Jn{n—1) "/‘"} . (16)

Since (1) implies that
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iz - 1 H . 4 1y
el <lolf - 7<H/ntn -1 (an

and, by (1) and (7)) we deduce p>(a- 230 I',and hence.by Lemma 1, the
scetional curvatures of M are bounded beiow from o, we can appiv lemma 3,
and from (16) and (17) conclude that either {piF= 6, i.e., by Lemma 2. M
is pseudo-umbilical, or
suplul=i41/, nn-15 . (18)
I i ul® attains its maximum at a point of M. tben by using Hopf's well-
known maxunum principle we see from (16) and (17) thar |u |’ = constant and

v o n 12
hence |i 2

SH'Y/n(n- 1) on M everywnere, i.e., Lo’ P= {tra|*/(n- 1) by (i6.
f M 2. . . . . -
Mow assume | 4" has no maximum on M. we prove that it is impossibie.

9

in fact. from Lemma 3 it foliows that, for any naturai aumber v, there exists a
point x,« M such that, by (18) and (i8),
H* . H* i
et — e WP () <L (15)
Vv

nin— 1) sin-1y Zv
and
1 — 2 ' ; ' ul { 1V i & l 1 .
mrmm | Hi s jul{x) |\ —=—=— ]/A:}(xv\ <= . (20)
Jrlr— 1) ] Jaln— 12 I b2y

From (19) we get

T

A
"1
1
AR
1
1
|
1
=
—~
><
T

(W /(=1 + fulxy  Jaln— 1)

¥

and thus (20) becomes

- | H y
_._E‘.__ f Hi ! )/“":.:—_‘:__I- + Hl‘!e (x,)
Jr(r—1) Jn(r— 13
[$3
g2 - \.—";l‘(’;—__z __._3"._ i
fpeiltx,) ~—~—-—<’1_2)’H ,’uii\x) —— <0 . (21

Since [af (x,)

Tl (co<(Jnin— 1) +Jmn— D) +4n-DHD/2n- 2| H

and thus
supipl< (Valn— 1) +in(n—1) +4(n-DHEH2n-D|H | ,
frem which together with (18) it folilows that
Zin~— DY n~-1)<\\,r(1—1) F4nta - -2 H? .
in view of H=20, we have then
H* Snin—13/(n—2). (22)

n

Ve now consider a homothetic transformation v in 7 which s defined oy

2re A is an arbitrary posiuve teal nuymiber, Then, by the siructure
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squations, we have @ pnE @ g Thu it is easy io see that the image M= # (M)
catisfies the same conditions as M and H°®= H?/i?, where H is the corresponding
Guantity for M. Tihen we rauvsi have, as (22) above,

HY= 2 H 2 - )/ e 2),
which ts evidently absurd for ,3.<J (n—-2)H*/2(n-1)n. This compleies the proof

4. The Proof of Theorem .

First of ali, we noie that |trof’ = H%=comstant under the hypoihesis of The
orem 1. Thus, if 7= ¢, then (i) lmpli;:s f]o!izz 0 on M everywhere, i.e.. M
i5 a totally geodesic R” in C". So {rem now on we assume 570 on M.

If »n»3, by Thecrem 2 we have to consider two cases.

Case (1) M is pseudo-umbilical, i. e., uuﬂzi 0 everywhere., Using the
iotjowing well-known estimate (c¢f. {3, § 7)

S (e H H = D - DY 2 - 2= e
yEst

we have from (14)

BEPFINT oL NfLf_mT L g2 P
zah =@ -2l {:2\2'1~3)H I} (23)

7!y is bounded atove and the sectional

The condition (1) impiies that [ z|*
curvaiures of M are bounded beiow from (0 (Lemma 1). Applying the assertion
(itiy of Lemma 3, (23) gives rise io either |7{°= 0 or
supft|i>(n-1YH n(2n~3) . (24)

Hewever, by virtue of (11} and the ftact that [Iylizr 0. it fellows from (1)
that 1< H/n(n— 1), which coniradicis (24) for n>> 3. Hence, [7)*= 0 and,
hv Lemma 2, M isatotally geodesic R” in C".
Itra 7/ (n~ 1), then by (10), |x
In this case, from (11} and (1) we get .

It~ HY n(n- D =llo P ~H  nlH/n(n—- 1)

which implies |r}*=0¢ on M everywhere. Thus, &= 0 (k% 1) and, by (12),

/ = H'/n(n- 1) everywhere.

N2 .
it =

~ 7 it
Case ({i): jo

-

#.= 0 except j=k= 1, from which it follows that
A\ = tr(HY) = H = constant .

L)
ol

P

=, M is {ctally geodesic. Since !Iaﬁz =H%(n-1), by an anaiogy to
tie proof of Theorem 4 in (2], M=8 xR, where 8' is a circle with the rad-
s i/ H in C.

Finaliy, we consider the case that = 2, By Lemma |, the condition (1)
guaranices that the Gauss curvature of M i3 nonnegative. If B is viewed as a-

surface in RY with paraliel mean curv ature, then Hoffman’s thecrem (¢f. {7}
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says that M is either R? or S8'xR! because M is non — compact. Therefore, Theo-
rem 1is proved completely.
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