The Tensor Products of Nilrings with Bounded Index of Nilpotence*

Chang Qing (常青)

(Hubei University, Wuhan)

R is a ring, for any nilpotent element $r \in R$ if there exists a fixed integer n such that $r^n = 0$, then R is said to be with bounded index of nilpotence, the least of such integer n is called the index of R, denoted by i(R).

If R is a nil ring with bounded index i(R) = n, R' is a commutative ring, A·A·Klein [1] has discussed the property of bounded index of nilpotence of $R \bigotimes_{Z} R'$. In this paper we shall discuss the properties of bounhed index of nilpotence of $R \bigotimes_{Z} R'$ when R' is not commutative.

First, let us observe the polynomial identities which R satisfies. Obviously

$$g(X) = X^n \tag{1}$$

is a polynomial identity of R, because of R being nil with i(R) = n. Multilinearizing g(X) [2, p.6], we obtain that

$$f(X_1, X_2, \dots, X_n) = \sum_{\pi \in \text{sym}(n)} X_{\pi(1)} X_{\pi(2)} \dots X_{\pi(n)},$$
 (2)

where π takes over the symmetric group sym(n) on n symbols $\{1, 2, \dots, n\}$, is a polynomial identity of R.

Further, we have:

Lemma | Let

$$f_{1}(X_{1}, X_{2}, \dots, X_{2n}) = \sum_{\substack{\sigma \text{ takes over all} \\ \text{odd permutation} \\ \text{in sym}(2n)}} X_{\sigma(1)} X_{\sigma(2)} \dots X_{\sigma(2n)}, \tag{3}$$

$$f_{2}(X_{1}, X_{2}, \dots, X_{2n}) = \sum_{\substack{\tau \text{ takes over all} \\ \text{even permutation} \\ \text{in sym}(2n)}} X_{\tau(1)} X_{\tau(2)} \dots X_{\tau(2n)}, \tag{4}$$

then $f_1(X_1, X_2, \dots, X_{2n})$ and $f_2(X_1, X_2, \dots, X_{2n})$ are polynomial identities of R.

Proof If $X_{1'}X_{2'}\cdots X_{(2n)'}$ is a summand of $f_1(X_1, X_2, \dots, X_{2n})$, where ($(1', 2', \dots, (2n)')$), by definition of (3), is on odd permutation of $(1, 2, \dots, 2n)$, consider

$$f(X_{1'}X_{2'}, X_{3'}X_{4'}, \dots, X_{(2n-1)'}X_{(2n)'})$$
 (5)

^{*} Received Jan. 25, 1985.

Referring to (2), each summand of (5) can be transformed to $X_{1'}X_{2'}$ $X_{(2n)'}$ by performing even number transpositions, so each summand of (5) has same odd permutation of $\{1, 2, \dots, 2n\}$ as its foot index, hence each summand of (5) is also a summand of (3). Moreover, if $X_{1''}X_{2''}$ $X_{(2n)''}$ is another summand of (3), but is not a summand of (5), as above, $f(X_{1''}X_{2''}, X_{3''}X_{4''}, \dots, X_{(2n-1)''}X_{(2n)''})$ is a partial sum of (3), and (5) and $f(X_{1''}X_{2''}, X_{3''}X_{4''}, \dots, X_{(2n-1)''}X_{(2n)''})$ have distinct summands. Hence we conclude that $f_1(X_1, X_2, \dots, X_{2n})$ is a sum of polynomials of the form (5). This implies $f_1(X_1, X_2, \dots, X_{2n})$ is a polynomial identity of R because of (2) or (5) being polynomial identity of R.

Similar argument is applied to show that (4) is a polynomial identity of R.

Corollary 2 The standard polynomial (2, p13)

$$S_{2n}(X_1, X_2, \dots, X_{2n}) = \sum_{\pi \in \text{sym}(2n)} (\text{sg}\pi) X_{\pi(1)} X_{\pi(2)} \dots X_{\pi(2n)}$$

is a polynomial identity of R, where $sg\pi = -1$ if π is an odd permutation, $sg\pi = 1$ if π is an even permutation.

Proof Since $S_{2n}(X_1, X_2, \dots, X_{2n}) = -f_1(X_1, \dots, X_{2n}) + f_2(X_1, \dots, X_{2n})$, the result holds obviously by Lemma 1.

Now we transfer to the main topics.

Let R be nil with bounded index i(R) = 2, for each pair $a, b \in R$, $0 = (a+b)^2 = a^2 + ab + ba + b^2 = ab + ba$, so ab = -ba, $a^2 = 0$ for any $a, b \in R$.

We have:

Theorem 3 If R is nil with bounded index (of nilpotence) i(R) = 2, then for any ring R', $R \bigotimes_{z} R'$ is nil.

Further, if R' satisfies any of the following

- (i) \mathbf{R}' is finitely generated as **Z**-module with n generators x_1, x_2, \dots, x_n ;
- (ii) R' is nil with bounded index of nilpotence $i(R') = n < \infty$, then $R \bigotimes_{\mathbf{Z}} R'$ is nil with bounded index, and in the first case $i(R \bigotimes_{\mathbf{Z}} R') \le n + 1$, in the second case $i(R \bigotimes_{\mathbf{Z}} R') \le 2n$.

Proof For any $\sum_{i=1}^{k} a_i \otimes x_i \in \mathbb{R} \otimes \mathbb{R}'$, each summand of the expansion of

 $(\sum_{i=1}^{k} a_i \bigotimes x_i)^{k+1}$ is of the form $a_{j_1} a_{j_2} \cdots a_{j_{k+1}} \bigotimes x_{j_1} x_{j_2} \cdots x_{j_{k+1}}$, where $a_{j_i} \in \{a_1, a_2, \cdots, a_k\} \subseteq \mathbb{R}$, $x_j \in \{x_1, x_2, \cdots, x_k\} \subseteq \mathbb{R}'$, $1 \le i \le k+1$. By pigeon-hole principle, some a_i must occur twice in $a_{j_1} a_{j_2} \cdots a_{j_{k+1}}$, so by (6), $a_{j_1} a_{j_2} \cdots a_{j_{k+1}} = 0$, this shows that

 $\left(\sum_{i=1}^{k} a_i \otimes x_i\right)^{k+1} = 0$, the first assertion is proved.

Now if R' satisfies (i), $\forall x \in \mathbb{R} \otimes \mathbb{R}'$, we can write $x = \sum_{i=1}^{n} a_i \otimes m_i x_i$, $a_i \in \mathbb{R}$, $m_i \in \mathbb{Z}$, x has at most n summands of the form $a \otimes x_i$, by the above proof, $x^{n+1} = 0$, hence $\mathbb{R} \otimes \mathbb{R}'$ is nil with bounded index $i(\mathbb{R} \otimes \mathbb{R}') \leq n+1$.

If R' satisfies (ii), $\forall x = \sum_{i=1}^{u} a_i \otimes x_i \in \mathbb{R} \otimes \mathbb{R}'$, $a_i \in \mathbb{R}$, $x_i \in \mathbb{R}'$, by the linearity of tensor product, we may assume that $a_i's$ are distinct.

Consider $x^{2n} = \left(\sum_{i=1}^{u} a_i (x_i)^{2n}\right)^{2n}$, if u = 2n, by the above proof, we see $x^{2n} = 0$; if $u \ge 2n$, the expansion of X^{2n} is a sum of the monomials of the form: $a_{t_1}a_{t_2}$ $a_{t_2} \otimes x_{t_1}x_{t_2}$ $x_{t_{2n}}$, where $a_{t_1} \in \{a_1, a_2, \dots, a_u\}$, $x_{t_1} \in \{x_1, x_2, \dots, x_u\}$, if some a_{t_1} occurs twice in $a_{t_1}a_{t_2} \cdots a_{t_{2n}}$, then by (6), $a_{t_1}a_{t_2} \cdots a_{t_{2n}} \otimes x_{t_1}x_{t_2} \cdots x_{t_{2n}} = 0$. Deleting all zero summands in the expansion of x^{2n} , we obtain:

$$x^{2n} = \left(\sum_{i=1}^{u} a_{i} \otimes x_{i}\right)^{2n} = \sum_{\substack{1 \leq t_{1}, t_{2}, \dots, t_{2n} \leq u \\ t_{i} \text{ are distinct}}} a_{t_{1}} a_{t_{2}} \cdots a_{t_{2n}} \otimes x_{t_{1}} x_{t_{2}} \cdots x_{t_{2n}}, \tag{7}$$

if $a_{t_1}a_{t_2}$ $\cdots a_{t_{2n}} \otimes x_{t_1}x_{t_2}$ $\cdots x_{t_{2n}}$ is a summand of (7), and τ is any permutation of $\{1, 2, \dots, 2n\}$ then $a_{t_{\tau(1)}}a_{t_{\tau(2)}} \cdots a_{t_{\tau(2n)}} \otimes x_{t_{\tau(1)}}x_{t_{\tau(2)}} \cdots x_{t_{\tau(2n)}}$ is also a summand of (7), so

$$\sum_{\tau \in \operatorname{sym}(2n)} a_{t_{\tau(1)}} a_{t_{\tau(2)}} \cdots a_{t_{\tau(2n)}} \otimes x_{t_{\tau(1)}} x_{t_{\tau(2)}} \cdots x_{t_{\tau(2n)}}$$

$$(8)$$

is a partial sum of (7). Moreover if $a_{t_1'}a_{t_2'}\cdots a_{t_{2n}'}\otimes x_{t_1'}x_{t_2'}\cdots x_{t_{2n}'}$ is a summand of (7) and $\{a_{t_1}, a_{t_2}, \cdots, a_{t_{2n}}\} \neq \{a_{t_1'}, a_{t_2'}, \cdots, a_{t_{2n}'}\}$, then

$$\sum_{\tau \in \operatorname{sym}(2n)} a_{l_{\tau}(1)} a_{l_{\tau}(2)} \cdots a_{l_{\tau}(2n)} \otimes x_{l_{\tau}(1)} x_{l_{\tau}(2)} \cdots x_{l_{\tau}(2n)}$$

$$(9)$$

is another partial sum of (7), and, (8) and (9) have distinct summands. By these analysis, we have seen that x^{2n} is a sum of elements of the form (8), if (8) vanishes, then so does x^{2n} .

Hence it remains to show that (8) vanishes.

If $\pi \in \text{sym}(2n)$ is an odd (or even) permutation, then by performing odd (respectively even)-number times transposition on $a_{l_{\pi(1)}}a_{l_{\pi(2)}}\cdots a_{l_{\pi(2n)}}$ we can transform $a_{l_{\pi(2)}}a_{l_{\pi(2)}}\cdots a_{l_{\pi(2n)}}$ to $a_{l_1}a_{l_2}\cdots a_{l_{2n}}$, by (6) each transposition changes the positive negative sign, so

$$a_{t_{\pi(1)}} a_{t_{\pi(2)}} \cdots a_{t_{\pi(2n)}} = (sg\pi) a_{t_1} a_{t_2} \cdots a_{t_{2n}}$$

Hence

$$a_{t_{\pi(1)}} a_{t_{\pi(2)}} \cdots a_{t_{\pi(2n)}} \langle x_{t_{\pi(1)}} x_{t_{\pi(2)}} \cdots x_{t_{\pi(2n)}}$$

$$= 8 =$$

$$= (\operatorname{sg}\pi) a_{t_1} a_{t_2} \cdots a_{t_{2n}} \otimes x_{t_{\pi(1)}} x_{t_{\pi(2)}} \cdots x_{t_{\pi(2n)}}$$

$$= a_{t_1} a_{t_2} \cdots a_{t_{2n}} \otimes (\operatorname{Sg}\pi) x_{t_{\pi(1)}} x_{t_{\pi(2)}} \cdots x_{t_{\pi(2n)}}$$

$$\operatorname{Use} (10), \text{ rewrite } (8) \text{ as:}$$

$$(10)$$

 $x^{2n} = \sum_{\pi \in \text{sym}(2n)} a_{l_{\pi(1)}} a_{l_{\pi(2)}} \cdots a_{l_{\pi(2n)}} \bigotimes x_{l_{\pi(1)}} x_{l_{\pi(2)}} \cdots X_{l_{\pi(2n)}}$

$$= \sum_{\pi \in \operatorname{sym}(2n)} a_{t_1} a_{t_2} \cdots a_{t_{2n}} \otimes (\operatorname{sg}\pi) x_{t_{\pi(1)}} x_{t_{\pi(2)}} \cdots x_{t_{\pi(2n)}}$$

$$= a_{t_1} a_{t_2} \cdots a_{t_{2n}} \bigotimes_{\pi \in \text{sym}(2n)} (\text{sg}\pi) x_{t_{\pi(1)}} x_{t_{\pi(2)}} \cdots x_{t_{\pi(2n)}}$$

 $=a_{t_1}a_{t_2}\cdots a_{t_{2n}}\otimes S_{2n}(x_{t_1}, x_{t_2}, \cdots, x_{t_{2n}})=0.$ The last equality holds by corollary 2. (8) vanishes, hence ends our proof. Partial result of Theorem 3 may be revised slightly. That is:

Corollary 4 If R is nil with bounded index i(R) = 2, R' is a ϕ -algebra of finite dimension k, then $R \otimes_{\mathbf{z}} R'$ is nil with bounded index $i(R \otimes R') \leq k+1$.

Proof For any $x \in \mathbb{R} \otimes \mathbb{R}'$, x has at most n summands of the form $a \otimes ax$ $a \in \mathbb{R}$, $a \in \phi$, $x \in \mathbb{R}'$. The corollary holds immediately by Theorem 3.

From now on we assume R is nil with bounded index i(R) = n > 3. Since R is a nil PI-algebra, so R is locally nilpotent (3. p232). For any ring R',

 $x \in \mathbb{R} \bigotimes_{\mathbf{Z}} \mathbb{R}'$ has the form $x = \sum_{i=1}^{m} a_i \bigotimes x_i$, $a_i \in \mathbb{R}$, $x_i \in \mathbb{R}'$, and $\{a_1, a_2, \dots, a_m\}$ is a

finite subset of R and is then nilpotent, so x is nilpotent. This is:

Theorem 5 If R is nil with bounded index i(R) = n, for any ring R', $R \otimes_{\mathbf{z}} R'$ is a nil ring.

If R' satisfies some condition, $R \bigotimes_{z} R'$ may have bounded index.

Remark Klein has pointed out that if R is nil with $i(R) = n < \infty$, then $M_k(R)$ is nil with bounded index [1]. The author has proved this result independently and given a bound for $i(M_k(R))$. Using this result we establish:

Theorem 6 If R is nil with bounded index $i(R) = n < \infty$, R' is an algebra over a field ϕ of finite dimension m with unit 1, then $R \otimes R'$ is nil with bounded index of nilpotence.

Proof First consider $M_m(\phi) \bigotimes_{\tau} R \cong \phi \bigotimes_{\tau} M_m(R)$. By the above remark, $M_m(R)$ has bounded index, field ϕ is commutative, by the result which A·A. Klein proved in [1], $\phi \bigotimes_{7} M_{m}(R)$ has bounded index of nilpotence, so does $\mathbf{M}_{m}(\phi) \otimes_{\mathbf{Z}} \mathbf{R}$. Now using the usual method, for any $x \in \mathbf{R}'$, let $x_{\mathbf{L}}$ denote the linear transformation of R' over ϕ such that for $a \in R'$, $x_L(a) = xa$. Since $1 \in A$ R', so R' is isomorphic to the subalgebra $R'_{L} = \{x_{L} | x \in R'\}$ of the algebra of linear transformation of R' over ϕ . Moreover, R' is of finite dimension over ϕ , so R'_L is isomorphic to a subalgebra of $M_m(\phi)$, hence R' is isomorphic to a

subalgebra of $M_m(\phi)$. These induce an isomorphic of $R \otimes_{\mathbf{Z}} R'$ onto a subalgebra of $R \otimes_{\mathbf{Z}} M_m(\phi)$, the latter has bounded index of nilpotence, so does the former.

References

- (1) A.A. Klein, Rings with bounded index of nilpotence, Contemporary Mathematics, Vol 13
- [2] L.H. Rowen, Polynomial Identities in Ring Theory, Academic press, New York, 1980.
- [3] N. Jacobson, The Structure of Rings, 1956