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Initial Boundary Value Problem for One Class of System
of Multidimensional Nonlinear Schrodinger-Boussinesq

Type Eequations™
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§1. introduction

In laser-plasma nonlinear interactions, the problems of solution for one
class of system of nonlinear Schrodinger-Boussinesq type equations in one
dimension have been studied in (1,2 ). In (3 ] a class of multidimensional
nonlinear Boussinesq type has been proposed. Under some conditions, we
have proved the existence and uniquenss of the global solution for one

. class of system of nonlinear Schrodinger-Boussinesq type equations in one
dimension in (4 ]. _

In this paper, we consider the following initial -boundary value problem

for one class of the system multidimensional nonlinear Schrodinger-Boussin-
esq type equations

ie, AT —ne+ BT |5 =0 (1.1)
n, = Ap (1.2)
g.=n+ fn)+vn, —An+|E [ 1.3)
?[,:0=5;(x), n ‘,:0: nog(x), @ lrzozwo(x)’x(Q 1.4)
—ﬂm:”‘m:‘le: 0 ' (1.5)

where v,1 are positive constants, f is a real constant; i=/-1 ; e(x,1)=
(&(x,tyeomsey(x,t)) is an unknown complex valued functional vector, n (x,7)
and ¢ (x,r) are unknown real valued functions; f (s) is a known complex
valued real function, seR'. &, (x) is a known complex valued functional
vector, ng(x) and @,(x) are known real valued functions. Let QCR’ be a

2
smooth bounded domain and JQ its boundary. x= (x|, e, x;)€Q, A= dz
X1

62

+é——5—. By means of the Galerkin method and the integral priori estimate
X

+ sas+

method under some conditions we prove the existence and uniquence of the
generalized and strong global solution for the problem (1.1)- (1.5).
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Here, we adopt the usual notation and convention. Let H™ () denote
1
the Sobolev space with the norm | [jy~q,= ( 2. [D%u|}) Zor simply [ |
la| '

<m

H7 (@) denote the closure in H” Q) of Co°(Q); || uly =ess sup|w (x) |,
i xQ

> L
1 |y = € Y M i) ) 7 and so on (see (51).
i=1

§ 2.Existence of the Generalized Solutions of Problem (I.})~ ([.5)

We construct an approximate solution of the problem (1.1) = (1.5) by the
Galerkin method, and choose a basis {w;} CHyH?, which are the eigen-
functions of the problem,

~Aw;= AW, . w;le=0 @2.1)
Obviously, if domain Q is suitably smooth, then there must exist such a
special basis. In fact, if QeC?, then the basis {w,} CH*(Q)NH, @), and
it is dense in HL(Q).

Now suppose that the approximate solution be written as

m m
Fa(Xy )= )] @y G005 Mp(Xy1)= 30 Bo(tdw,(x),
j=1 j=1

m
Pm(X,1)= 3} ym(E)W; () 2.2)
Jj=1
where
Em(X 1) = (E (X, 1), 8, (X 8Dy, (X)), a; ()= (ajml (1,0 (g0, ,n (1))
are complex functional vectors. According to Galerkin’s method, these coe-
fficient vectors a,,(¢) and coefficients g,,(), »,,(t) need to satisfy the follo-

wing initial value problem of the system of the ordinary differential equa-

tions .
[ iy W)+ Begyy W)= Mty W)+ B &0 [2em, w)= 0, (2.3)
Rp = Ap,,w, ) =0, (2.4)
P = () —on, + AR, |, Py W)= 0, (2.5)

Emt (x’()):‘sml() x)y, "m(x,0)=”m0(x),¢m(x’0)zwmo(x) 2.6)
([':1’2’ e, N3 S=1,2_."-,- m),

. _ m
where (u,v)=fu(x)v(x)dx, Ep (X, 8)7 Z @ (PDOW; (X)), [EZIZ: ﬁ“m: l’-.
Q j=1 =1

Suppose that '
Emio (X) 801 (X) 3 Npg (X)) >R (X)), Pro(X)>p, (x) in Hy(Q), m>oco, [=1,2,,N.

2.7)
Under the following conditions of Lemmas and priori estimates, we know
that there exists a global solution in the interval for ‘the initial value
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proplem (2.3) - (2.6) of -the system of nonordinary differential equations and it

can approximate the solution of the problem (1.1)- (1.5),
Lemma | If & (x)eL,, then for the solution z.(t) 6f the problem

(2.3) - @2.6),we have
‘ len@ I, 0 <Eo (2.8)

where the constant E, is independent .of m.
Lemma 2 If wu(x)eH;(Q ), QCR?, then there is the estimate
fuce) 1 < I Wl Ju I 2.9
Lemma 3 If the following conditions are satisfied.
(i) B<0, v>0, >0, [ f(z2)dz>0

(i) Je e <1, and: 5 (x), 1y (), 90 (x)eHy (Q) , xeQCR?, then there
is the estimates

| VerIL, co T Von@O R, 41 7anOld Lt R, <Ei, (2.10)

where the constant E, is' independent of m,
Proof Multiplying (2.3) by a;m, (t), and summing up for s from 1 to
m, it follows )

E e s Emie) + Bty i)~ M s € )+ BA T Py €00, )= 0, (2.11)
Taking the real part of (2.11),and summing up for / from 1 to N, it
yields

AV SN el - PR - & R ¥ o 2.12)
dt mL1+f ml|r GX 2 d[Q m x= 0,
Q
Since

f n, e, |2dx :_gt_f n,| enPdx —f nl e Pdx,

Q , Q Q ,
and multiplying (2.5) by g’.(r), and summing up for s from 1 to m,it
follows ‘

(WMI - nm— f(nm)— ynmr +/1Anm—l E; lz L] ”mz ) = 0"

So
- (’ E; '29 Ny )= (— D ot s Momt ) + (f (nm)’ L™ )+ V(nmnnml)_ l(Anmnnm, ) + (npm n,: )~ (2. 13 )
Multiplying (2.4)by »’,(), and summing up for s from 1 to m, it

yields.
(nml "'Aw,,,, mez ) = 0 .
Thus from
, @ i) = APy O )= | V0
N mt s me my Pms 2 dr milL, »
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and

h-
) =5 gl s SO mm) =5 [ 17 @)dzdx,

A d
~A(Any, ny) = 9 —a—t—” Vn, "i,

Substituting these relations into (2.12) and (2.13), there is
P - 1 d 1 d gy 2 d 1
ar Ly val, E;j}nmlsm|2dx+‘2‘ a1 Ven i, + 5 g anL,*a,—LJO f(z)dzdx +
, A d - _
RS s R ‘dffgnsm.‘dx-o.
Integrating the above equality with respect to r , it follows
—» —» R 1 o
E =] VarlL, +[ nal Tl dx+ 5| Voult, + 5 Inali, 4] ]| F dzdx+
h .

t J) .
wf I nm @I, dr+ 5 Vma - lﬂg | em|*dx = E (0. @2.14)

Since fg"'f (z)dz>0, using the inequality (2.9 ) in the following,

| nwlEnlPdx | nall + eIt < U nal, 51 Yan O 1E O,

Q
= Ll 4l Ven O, N en @ ], S5kl 1 Ven Ol e o) 7, (m=my)
hence from (2.14) it yields

—> — 1 ~ 1 m
(1 =l O I Veult, + 51 Vealt, + flralt, +L}f0f (z)dzdx

~t A
) w2 ||2Ll.dz F 2 o I}, - %Q

Thus the estimate (2.'10) is obtained immediately.
Lemma 4 If the following conditiong are satisfied,
(i) B>0,v>0, 4>0,[ f(z)dz=0

iy +*§-> leoce) [1,<1, and g G)eHy@), 9o (x)eHy @) .

then the estimate (2.1¢) is true too.

i

Lemma 5 Suppose that the conditions of Lemma 3 or Lemma ¢4
are satisfied, and | f(z) |<A4|z|'+ B holds, where A4, B are positive cons-
tants, 1<¢ <loo, then we have '

ll 3;, "H ‘(Q)xL""(O,T)*" Pm "H“(Q)xL""(o,T)+"”m ||H’1(Q>xL°°(o,T)§E2 @.15)
where the constant E, is independent of m.

Lemma 6 If the conditions of Lemma 3 or Lemma 4 are satisfied,
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then we have
"E:( "t+At')—E:-( "t)"L1+ "”m ( "t+At)—”m(',’)"Lz+ ”‘Pm( w1+ Ar)

; 1
— (5 1) | SCAL T (2.16)

where the constant C is independent of m.

~ Difinition I The functions {?(x,t),n(x,t),tp (x,t)} is called the
generalized solution on the region (0,c0) xQ for the initial-boundary value
problem (1.1)- (1.5),if the following conditions are satisfied by {z (x,?),
n(x,t),o(x,1)};

(1) 0,0, nx, 0,9 (x,1)eL=0, T; Ho@))Nw 0, T s H '@)HN

NC @20, Ts L@ )
T —p — — —
(i) fo GEUEHT, N+ ((eW), ZUM+ (g 1)y, T@)) - B &) e, S@))Idr
‘ +i(e0), 50))=0 2.17)
where £ (1) =X (x,r) is any complex valued function, '
T @eC O, T;L, Q))NCYO, T; Hy (Q) NH*(Q)), and = T)=0.
‘and W[ Ve Vidx.
T
(iii) fot(n(_t),N,(t))+ o), Nt)))3de + (n@©@), N0 ))=0 (2.18)

Here N (t)=N (x,t) is any real valued function,
N @)C'(0,T; L,()NC° 0, T35 H (Q)), and N(T)=0

. T : 5
Gv) [ @), @,¢N+ @ @O+ f+|T0 )= v @), (1))

+A ((n(t), ())) ddr + (9 (0, @)~ vn0), 20 ))= 0 (2.19)
Here ®(x) is any real valued function
® (x)eC' (0, T; L, (Q))NC°O0, T5L,(Q)), and & (T) = 0
Theorem | Suppose that the conditions of Lemma 5 are satisfied,
then there exists the generalized solution for the initial-boundary value
problem (.1 ) - (1.5).

§3 Existence of the strong solution for the problem (I.1)~.5)

&
Lemma 7 If the following conditions are satisfied
n
(i) v>0, 2>0,'f (2)dz>0

Gi) |z (x) I}, <1, and 0 (x), no(x),@o(x)eH) (Q), x¢QCR?., Then for
the solution of the problem (1.1)- (1.5) (= 0), there is the estimate
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2 2
PVl F IVelL o 4y Unlt o +Inli 0 <E; Gl

where the constant E,only depends on- the initial value functions g (x),
ny(x), @o,(x) and their first order derivatives.

Lemma 8 For the solution (x;, xs, 1) of problem (1.1)~ (1.5) (8=0),
we have estimate

I vg’"L‘,gCT(P>2), 1e7 <Cr\y > 2) ©(3.2)

where C; is a definite constant.

Proof The solution ~g_'(x,t) ‘of (1.1) can be expressed as
Fy=seg+[ 5@ - OHmEHEE) M,

where s(t)p=e'"p is a semigroup generated by the operator A. Differentia-
ting the above equality with respect to the sapce “variables, we have

De(1) =5 (1)Dag+[ 's¢r = $HD (n T @) M¢
I DE) |, <|l s)De |, +¢f | = ¢ | nDE+ Dne|, d¢
—> Tt \ _2-q)
<Ol v, - Chn | DeTe,r 120, I Dafe e

o> 2-g) v
<G| 8o||u’+Czj; (-¢) T d¢<C; () <LCr

1,1 1.1 1_»-2. : .
where IR and {:’—2 7 2p o S P>2, we can ascertain that

""”L/, and | ?"L, are Bgunded. For example, if we take p =3, then r=
5. By Lemma 7, { Ve, and |Vn|. are bounded. From Sobolev’s ine-
quality ||ﬂ|L‘ and |n|,, are bounded. Hence for p>2, Consequenty,
and by Sobolev's inequality we have (3.2)

Lemma 9 Suppose that the conditions of Lemma 3 are satisfied, and
assume that ' '

(i) S, [ m|<4|n|*!, 4>0, 4>1. |
(i) £ (x)eH} Q) NH Q) n, (x) eHL Q) NH2(Q), ¢,x XHS (@)NH2(Q) .
Then for the solution of problem (.1)- (1.5), there ‘is the estimations
—» T
1 TR LA e Ili,xL;fo.ll An, (v) | dr <E,, 3.3)
where the constant E, depends on the norms of 2o llu: s | mo(x)|ly: and

V ”Q’o(x)"}iZ .

— 66 —.
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Proof From (1.3), it follows

Ap,~An—Af (n) —vAn, +AAn-A|E )P = 0. (3.4)
Differentiating (1.2) with respect to ¢, it yields , *
3 ) n~Ap, =0 ) N (3.5)
Put (3.5) ‘'into (3.4), we obtain ’ )
n—An—Af(n) ~vAn,+ AAn—- A E|* = 0.n (3.6)
Taking the inner product for (3.6) with n,, it follows
My~ A= AJ(n) ~whn, + AAm—A |2 n,)=0 . (3.7)
Since
1 _1 d
(”nyn ) 9 " " ("Aﬂ, ”')_TWan"f‘z’
- (vAn,n))= w“ vn L, /E‘(Azn,‘ n) =5 —&‘;‘-u An L.,
| C=afy, m) I I VSO0 I, |V, o SNV fem [+ 2] VI,
||Vf<n>llizsl) fmlL,, ., Slvel (6>0)<A2||n||2(" Do el
20 +8)/8 +é -1 )2 +d)/ *é

ey
D+ \’)

e _2
<cl Vnhz“’ Civnly <cl i, <C zHD'lﬂ 23 fllnll ARE

th :
o 3 2 ) 2@ 1) * 2 ! .
I vre L LC, Han| 2 <csfanli, +C. : 3.8)

Y

Now we are going to estimate. the term

1<—Am2,n,>!=l<vu:2w>|s3uw,u1+ Mo
<5l v Ik, S A Dl uv,nL +Cy @-9)

Differentiating (1.1) with respect to ¢t and takihg the inner product for the
resulting relation with z,, we have ' ' o

G er, 20+ AE,, B = &+ e, 6,) = 0. ' (3.10)
Taking the imaginary part in- (3.10),it follows

d — PR 1 . ‘ ,

Farhe i<l o e 1Kl St + Ta <y i <,y 61D
By (3.7)@3.8)(3.9) (3.11) we obtam N
Lhm B+ 1Tn - AR+ e, Yn, I, <Cotln i+ N An L+ el 3+ Cuo-

By using Gronwall s mequahty, @3.3) can be derived from the above
inequality.

temma 10 Suppose thaf the conditions of Lemma 08 are satisfied, and
assume that

_67 pu—
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(i) fn)eC?,
(i) &o(x)H*NHL, no (xXH*NH), @, (x)eH*NH, .
Then we have

Az |

NS PO NS o IS R0 NS P SN Iy B

+lan, L, <Es, (3.12)
where E; is a definite constant.
Lemma 1. * If the following codditions are satisfied
(i) B=0,v>0, A>o,f0"f(z>dz>o

(i) e |},<1, and & (x),n0(x), @, Cx)eHy Q) , xeQCR?,
then for the solution of the problem (2.3)- (2.6), there is the estimates
lem( Fas _+10m @) Bacr _+ 12m fr <Ee @.13)

where the constant E, is independent of m,
Lmma 12 Suppose the conditions of Lemma 9 are satisfied and assum

assume that

2 2 2
E:‘)(x)"'l-l’é'n(x), ”mo(x)—H_*”o(x)s me(X)B“'%;(x)-

Then for the solution of problem (2.3)- (2.6) there is a time interval
{0,r,], such that the estimates

| > 1

Feme GO er 12 B+ 1AL o+ 0 Ay O [ dr <E, (3.14)
hold, where the constant E, is independent of m, -which depends on the
norms  of "E‘;Hﬂz’ I 70 (x) |2 and oo |y«

Lemma I3 Suppose that the conditions of ILemma 12 are satisfied
and assume that

(i) f(n)C’
(i) eo(x)H*NHLY, noG)eH*NH) , 0,(xXH*NH), and,

— H" - 4 4
Ento (X)) To(X) s My (X ) g (X) @ g (X) im0 ().«

Then there is a time ‘interval (0, ¢,), such that
P I PO S o AR AV oY e
+ " A2nm uilemﬂL ”Az‘;—;"izme*' ”Anmr “izxLOUSEs’ (3- 15)
where the constant FE; is independent of m and r,, only depends on the

norms |]E;(x) e s ”"o(x)HH‘ and | @0 ) |l -
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Theorem 2 ( Local existence theorem) Suppose that the following

conditions are satisfied
(i) feC®, [fzdz20, | £ (m)|<Aln}™) q>0, 40,

i) v>0,41>0, ||Eo’(x) I.‘ZL;f 1, x= (x;,x; )eQCR? .

Gii) ey (x)XH MHY , no (e H NHY, 0, OeH*MH] .
Then there exists a local solution on (0,¢,] for the problem (1.1)- (1.5)

(B=0)
& (x, 1)L ™0, 1o HA MHG ) , &, (x,10€ L0 , 105 HITHE), &y (x,1)eL™@0 , 15L,)5

n(x,DELTWO ,to; HAOHYY, 5, (x, L7, to; HHHD, n,, (x, 1)Ll 7O ,14; HY),
o (x, 1)L 70, tys H4lﬁ'H(;)’ :]),(_x,t)éLw(O.tO; Hz‘rhiH(l,l)a Dy (x9f)(Lm(0,t0‘H(l))§

where the constant ¢, depends on the norms | & () s, |7 (x) ], and

leo X e«
{a_*(x,t),n (n,t), ¢ (x,1)} is called the

(0,oc)yx€Q for the initial-boundary
are satisfied

Difinition 2 The functions
globlal strong solution on the region
value problem (1.1)-(1.5) (8= 0), if the following conditions
by {&(x,t), n(x,t), p(x,1)} ;
(i) eCx,t KL=, T; HYOHY)Y, & (x, )L 70, T3 HXHY), ¢ (x, 1)L 710, Ts L, ),
n(x,t %L >, TsH*NHy),n, (x, 1)L, Ts H*NHy),n,, (x,0 L0, T Hy) s
@(x,t)eL 0, TsH*NHY), ¢, (x, t)eL <0, T;H*HY), @, (x, 1)L 0, T;H)).

(ii) For any test function v(x)eH(‘,ﬂHz, the following integral relations

hold
(l;-T-Q_AE’—nE"’Z;):O’ (nr-——Amglf):O’ (@t-n—f(n)—vn,i-/"&/_\n“ 13}";2.11 s O‘
Giii) E 1, 0=, nl = ng(x), 9!, Te ).
Suppose that the conditions of Theorem 2 are satisfied ,
the problem (1.1)- (Q.5)(S=0)

Suppose that

Theorem 3

then there exists a global
Theorem 4 (Uniqueness theorem of smooth sclution)

(i) eg(x)eHXNHY, ny(x)eH’NHy, and ¢ (x)eH?(YHY; (i) f(m)eC*. Then the
smooth solution & (x,t %L <0, T;C?), nix,t)L=0,T:C?, @(x,t)L =@, T;C?)
for the problem (1.1)- (1.5) is unique.

Proof Suppose that there are two smooth solution;
{3, M;,@,) for the problem, (1,1)- (1.5). Let &= ~&;, n=n-n,, p=
@1~ ¢, Then from (1.1) (1.2) (1.3), it foilows

G &+ A (ngy +nye),w, )= 0

strong solution for

(T v,
ley, ny,@ . and

(3.15)

(n,—Adeo, w;) =0 (3.16)
(p,—n— (f(m) - finy))=vn,+2An~ (a1 2= |& ), w;)=0, V weHs NH? (3.17)
— Y —
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Differentiating (3.16) with respect to ¢, and taking —Aw;=41;w; with

(38.17), it follows ’
(n,,—An=A(f (n))= f(ny))—vAn,+ lAzn—A(IZ‘TIZ— |E;’2),Wj)= 0, (3.18)

where

AL ()~ f D)= ()= f ) | Vng 12+ f/(ny) (| Vny 2= | ng D+ (F (ny)
= ' (na))Any + [ (ny) (An = Any) :
‘ . o N _ N _ _
A(Iel |2— l &2 '2) = 21 A&y~ Aey )6+ 2 Agy; (8”“6‘2,)
Jj= j=1

N N N _ o
+2 ;l'uv"l!lz‘ 1v€2112]+ 2:1A811(8u' &350 + jZ_:l (Aey;— Aeg; dey; .
- i =

Taking the inner product for (3.18) with n,, we have
Rt L A Al R TN I AN |
<I” @ Im gl I B+ 1 @ | (Ve 1R )
x5 (Nalf+ In B+ 17 I am e s5Chn i+ | Il2 >+2 s “L

x (A, + In i+ Z ||8ul|Lw2 lae, o+ In i+ Z I ae, [l x
x (e IL,+ In iy +2 }: A Vel | Ve, IIL,)?( |72, e+ e 1)

N : N
1 1
SIS S U DT I TH ST W BV A X POT T
i= ST . i=

<Culnli,+ Vvnlt+ lanfi+ 1ASIL + 1+ 1V, + Hn 11D B9

Taking the inner product for (3.15) with A%, it follows
GAS + A=A (ney+ny) ,A)= 0, (3. 20)
where ‘
A (ne, + nze) Ane1 +2Vn °V£, A +Anze +2 Vnz Ve + n,Ae .

Taking the imaginary part in (3.20),we obtain
L4\ &R < | anzr, a2) [+2 | (T VR, A8 |
+ | (nAer, A2 |+ | (Angey AR |+2 | (T, +VE, AL |
Il (fanli + |8+ | Vel on B+ [T
+ | AETIIL“,'-%—(II"II{,*“ I ag7L,)+ | an, IIL;EL( 1N, + 1A )+ 2| Vna |l )l AT}
<crfanlp,+ A, + | Vol + 1201,0. (3.21)

Taking the inner product for (3.15) with &, we get
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d — —» - 1 -
~21—d—t e, < e, & < Her 5 nle,+ lelip<cdnli+ 120,y @.22)

and
S <hnll « I 02, 3. 23)
By using the following inequality »
IVel: <alae +a T, @>0, €>0)
and from (3,19)@3.21)(3.22) and (3.23), we obtain

A L R AV IR DY R P A vy
<cClm B+ [nli+ 1Vl + lanf+ |85+ |82 3. (3. 24)

By the zero initial conditions n|,_,=n,|,_,=Vn|,_=An|,_,=¢]|,_,=0%],.,

=0, and (3.24) implies n (x,r)=¢ (x,t)=0, (3.17) implies @ (x,t)=0.
Hence the proof of theorem is completed .
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