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Abstract

We define the r* combinatorial compound CY(A) of a matrix A, which can
be viewed as the characteristic function of the subset of the rXxr submatrices
of A which are combinatorially nonsingular. We prove that for 1<<r<<n, A is ful-
ly indecomposable if and only if C7(A)is.We determine the minimum number
of 2x 2 and 3x3 combinatorially nonsingular submatrices over all nx n fully in-
decomposable matrices and make a conjecture for general r.

I . Introduction

Let A=[a;;] be an nXx n matrix, and -let r be an integer with 1<r<n. Let
Q,,, be the collection of all strictly increasing sequences of length r taken from

{1,2,+s, n} . Thus (i}, iy,-,i,) €Q,,, if and only if 1<i;<i;<e<i,<n. For a,p
€Q,, ., ALa|p] denotes the rxr submatrix of 4 whose rows are indexed by the
terms of « and whose columns are indexed by the terms of . The classical +*
compound of A, denoted by C,(A4), is defined as follows. Let the members of
Q, ., be arranged in lexicographic order. Then C,(A4) is the (’r’) x (M) matrix
whose rows and columns are indexed by Q, , and whose (a,p)-entry is

c,, 3= det [Ala|A] (¢, B€Q, ).
The r* compound has some interesting properties [6,8] and has been useful in
certain combinatorial investigations.

We define here a combinatorial version of compound matrices and investiga-
te some of its properties. A set of entries of the matrix A4 is called independent
if no two of them come from the same row or column. The term rank of A4,
denoted by p(A), is the maximum cardinality of an independent set of nonzero
entries. It is well known [ 9] that p(A4) is the minimum number of rows and
columns of A which contain all its nonzero entries. We define 4 to be combina-
torially nonsingular if p(A4) =n. One reason for this definition is that when the
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nonzero entries of A4 are replaced by distinct, algebraically indepcndent indeter-
minants, the resulting matrix is nonsingular if and only if A4 is combinatorially
nonsingular . The r* combinatoria compound C¥(A4) of A4 is the (M) x (") matrix
whose rows and columns are indexed by Q, , and whose (a, 8) -entry c:,ﬂ satis-
(o (':‘ﬁ: { i, if A[aI.,B] is combinatoria lly nonsingular. The matrix C*(A)
0, otherwise.

is a matrix of 0’s and 1’s, and there is no loss of generality in assuming
from now on that 4 is also a matrix of 0's and 1’s. It then follows that C{(A) =
= A and that C3(A4) =[1] or [0] according as to whether A is combinatorially
nonsingular or cembinatorially singular. In addition, if 4=J,, the nXxXn matrix
of all s, then C7(J) =J

Recall that an nxn matrix A=[a;;] is called reducible if there exists a per-

for each r with 1<{r<n.

mutation matrix Psuch that PAP’ has the form
X A,

The matrix A4 is irreducible if it i1s not reducible. It is well known that 4 is ir

1) ] , A, and A, are square and nonvacuous.

reducible if and only if its associated directed graph D, is strongly connected
[10]. The vertices of D, are 1,2,++,n and there is an arc from i to j if and
only if a,#0. D, is strongly connected means for each ordered pair of vertices &,
! there is a directed path from & to /. The matrix A is partly decomposable if
either n =1 and A=[{0], or n.»1 and there are permutation matrices P and Q
such that PAQ has the form (1). The matrix 4 is fully indecomposable if it is not
partly decomposable. If the matrix 4 has all 1’s on its main diagonal, then 4
is irreducible if and only if 4 is fully indecomposable [2]. Fully indecomposab
le matrices arise in several different settings, for instance in the study of doub-
ly stochastic matrices and permanents [3,7]. It is well known that A4 is fully
indecomposable if and only if every (n—1)xX(a-1) submatrix of 4 has term
rank equal to n—1 [1]. In particular, for A fully indecomposable every 1 be
fongs to a set of n independent 1’s. In the language above we conclude that A4
is fully indecomposable if and only if (A =J,. We prove here that for 1<
¥ on, ¢ JCA is fully indecomposable if and only if 4 is.

A matrix A is permutation equivalent 10 a matrix B if there are permutation mat-
rices R and S with A= RBS.For n ‘1,let P,=[p;] denote the nxn matrix of 0's and 1's
where p;,= pp=e=p P I and p,; =0,otherwise.We let F,=1,+ P, ,where [, is the
nxn identity matrix.The matrix F, is readily seen to be fully indecomposable.For 4
an n xn matrix of 05 and 1's,let 0(A) equal the number of 1I’s of 4.Since an nXn fully
indecomposable matrix with n->1 has at least 2 1’s in eachrow and column,each nxn

fully indecomposable matrix A4 with n>>1 satisfies 0(A4)>>2n.1t is easily checked that
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equality holds if anh only if 4 is permutation equivalent to F,. We conjecture
here that for an axn fully indecomposable matrix 4 with n2-1 and for 1<7r-n
(2) a(CY(A) >a(CH(F)).
That is, F, has the smallest number of combinatorially nonsingular rxr submat
rices among all nx n fully indecomposable matrices. When r=1, the inequality
(2) holds by the above comment and equality is attained if and only if RAS =
F, for some permutation matrices R and S. For r=n, Cs(A) =J, and (2) is an
identity. Forr=n-1, C, (A =J, and (2) is again an identity. For A nearly de-
composable (see Section 3), we conjecture that for 2< r<{n- 2, equality holds
only when A is permutation equivalent to F,. We prove both conjectures for r=
=2 and 3.

2 . Full indecomposability

In this section we prove that the property of full indecomposability is inher-
ited from a matrix by its r* combinatorial compound. We begin by giving the
definition for the directed graph analogue of the r* combinatorial compound.

Let D be a directed graph with vertex set V(D) = {1,2, -, n}, and let r be
an integer with 1<<r<<n. The r* compound of D, denoted by D}, is defined as
follows. The set V(D;) of vertices of D; is the set Q, , of strictly increasing se-
quences of length r taken from {1,2,,n}. Let a= (i,,+=,i,) and = (j,, *, j,)
be in Q, ,. Then there is an arc in D] from « to g jf and only if
(3) For some permutation k,,s,k, of {1,«e,r}, there is an arc in D from i,
to ji, for r=1,e,r.

h

From the definitions of the r* combinatorial compound of a matrix and the

r* compound of a directed graph, it follows that for 4 an nx n matrix of 0’s
and 1’s,

(4) Doy = (DJ7 .

Recall that a loop at awvertex o of a directed graph is an arc from p to itself. We
first prove the following.

Theorem | Let D be a directed graph with vertex set V(D) = {1,2, «..,n} such
that D has a loop at each vertex. Let r be an integer with 1<{r<{n. If D is stro-
ngly connected, then D! is also strongly connected and D) has a loop at each vertex.

Proof Clearly, D:’ has a loop at each vertex. Suppose D is strongly con
nected. We need to show that for each ordered pair e, 8 of distinct vertices of
D!, there is a directed path from a to §. For the remainder of this proof we re-
gard members of Q, , as subsets of r elements of {1,2,++, n}, which can be then
arranged in strictly increasing order. Let a = {iyyoeeyisykyyronk,t and B={ i, e, Js
ki, k,) where s+t=r, s>1, and af={k,,k}. Let X= {iyyee i), Y="1Jp,
eees ji}, and Z = {k,,ee,k,}. Since D is strongly connected, there is a directed
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path P in D from a vertex in X to a vertex in Y. We choose P to be such a
path of minimum length and may assume i, is its first vertex and j, is its last
vertex. In particular, P is a simple path meeting X only at i, and meeting Y
only at j,. It suffices to prove the following,

(#») There is a directed path in D} from ¢ to some vertex » such that

ly NB|>t.

We prove ( #) by induction on the number m of vertices of P which belong to
Z . First suppose m=0. Then since D has a loop at each vertex, we easily con-
struct from P a directed path of D] from e to y =(a- {i}) U{j,) where y g =
ZU{Jj,}. Hence |yﬂ,8l>t, and ( ») holds in this case. Now let m>1. Let the
first arc of P which enters Z be (il,k;) and let the first arc of P which leaves
Z be (k,,j.) (see Figure 1). Let that part of the path Pfrom .k, to k, be P(k,,
kyyoee k)

Figure 1 . The path P in D

Since D has a loop at each vertex, there is a directed path of D} from «a={i,,
weeyiy gy iy kyyvee k) through ag = {iy, oo, i, 1, inm ki, sy k) 10 @y = {iy, oo iy ky,oe,
k,,,j;,k,,,(,,---,k,}. If /. €Y, then in ( +) we may take y =a, and we have a
path in D} from @ to » with |pNg|=r+1. Now suppose j,&Y. Then the part
of P from j, to j,, P(ji,e+,j), is a path of D of minimum length from a ver-
tex in X'={i1,---,i,_1,j§} to Y. Since a,N\f=Z and the path P(j,, e, j,) has
m-p<m vertices in common with Z, it follows by the inductive assumption -
that there is a directed path in D! from a; to some vertex y such that lyﬂﬂ!>,_
Since there is a directed path in D from a to a,, there is a directed path from
@ to y» where |y |>t. Hence ( ») holds by induction, and the proof of the
theorem is complete.

Theorem 2 Let 4 be an nXn matrix of 0'sand 1’s, and let r be a fixed
integer with 1<r<n— 1. Then 4 is fully indecomposable if and only if C}(A)
is fully indecomposable.

Proof First suppose A is fully indecomposable. Since every (n-1)x(n-1)
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submatrix of 4 has term rank n - i, there is a permutation matrix P< A. Let B
be a matrix obtained from A4 by row and column permutations. Then B is also
fully indegomposable and C;(B) can be obtained from C’(A4) by row and colu-
mn permutations . Hence there is no loss of generality in assuming 7,<<A. But
then A is irreducible, and D, is a strongly connected directed graph with a loop
at each vertex. By Theorem 1, (D,); is strongly connected with a loop at .
each vertex. Hence by ( 4) C:(A) is an irreducible matrix with I(,,,)<C:'(A) and
thus C¥(A) is fully indecomposable.

Now suppose that A4 is partly decomposable. Without loss of generality we

A 0
may assume A= [X‘ y ] where A, is k Xk with k >1. We may assume k<
2

n~k. We show C;(A) is partly decomposable by determining nonempty a*, " C
Q,., such that |a¢*] +|8*| = (") and p(Ala|f])<r for a€a* and BEB*, We distin-
guish two cases. ¢
Case 1: 1<r<n—k.
Let a*={a€Q, JaN{1,e, k} £o)}
B* ={BEQ,  JBT{k+1,e,n}}.
Then |a*|= (" ~ ("7 k) and |g*|=(7"k), so that |a*|+|8*| =(%). Moreover,
since 4[a|f] has at least one row of all 0's, #( ALa|p1)<r for a€a®, BEB".
Case 2 r=n—k+1t, 1<r<k-1.
Let a* ={a€Q, | lan{L, e, k}|>t+1)}
B*={BEQ, J{k+ 1 e n CB}.

Then |a®|= 'kZ'( tfi) (r—n(-t'li,') ) and |g*]= (tk) . Hence

i=1 s .

a1+ 18= 8 (A Crekn) = £ (325 = (1)
Moreover, for a€a®, g € 8", ALa|f] has a zero submatrix of size(s+1)x (n~-k)
where t+1 +(n-k)=r+1 and hence p(A[a|p])<r . This completes the proof of
the theorem.

Note that for r=n, A fully indecomposable implies Ch(A) =[1], a fully
indecomposable.

3. Proof ¢f the conjectures for r=2 and 3.

Let A be an nxn fully indecomposable matrix of 0’s and 1’s. Then ‘4 is
called nearly decocmposable if each matrix obtained from A by replacing a 1 by
0 is partly decomposable. We shall need the following two properties of nearly
decomposable matrices which we state as lemmas.
£51

Lemma | Let A be an nx n nearly decomposable matrix of 0’'s and

1’s. If n>2, then J, is not a submatrix of A.
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13
Lemma 2

exists an integer s with 1<{s<{n—1 and an (n-s5) Xx(n~-s) nearly decomposable

‘Let A be an nx n nearly decomposable matrix. Then there

matrix A4’ such that A4 is permutation equivalent to

(5) T

Where unspecified entries are 0’s. If 4 is not permutation equivalent to F,,
then s<<n-3.

In addition we require the following two lemmas which are easily obtained

from known re .lts.

Lemma 3 For 1< r<n, 2 gy 2m ome e 1

a(c;"(‘p,,))z—zn—_-r-( n ’)=—r—( "I

Proof ”i‘he result holds when r=1, since ¢(C{(F,)) =c(F,) =2n. Suppose 2<
r<_n. Then an rxr submatrix B of F, satisfying p(B) =r has exactly one inde-
pendent setof r 1’s. Hence the number of rxr submatrices B of F, with p(B) =r
is the same as the number of independent sets of r 1’s of F,. From the defin-
ition of F,, this is the same as the number g(2n,r) of ways to select r objects,
no two consecutive, from 2n objects arranged in a circle. By a theorem of Ka-
plansky (see[9,p.341), g(2n,r):-2—3—'1—r—(2;’") and the lemma follows.

Ltemma4 Let 9, be the nX n matrix

Then for 1<r<<n, o(Cr(Q,))=(2n"T),

Proof o(C](P,)) is the number f(2n-1,r) of ways to select r objects, no
two consecutive, from 2n - 1 objects arranged in a line. By another theorem of
Kaplansky (see[9,p. 331),

g(2n,r) =(2"r_ .

Theorem 3 Let 4 be an nx n fully indecomposable matrix of 0's and s
with n>>2. Then
(6) o (CHA)Y>n(2n-3).

If n=3, equality holds for all fully indecomposable 4. For n>>3 and A nearly
decomposable, equality holds if and only if A4 is permutation equivalent to F,.
Proof Clearly it suffices to prove (6 ) when 4 is nearly decbmposable.
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Thus let 4 be nearly decomposable. By Lemmal 1,J, is not a submatrix of A4,
and hence 0(C;(A) equals the number of independent pairs of U's of 4. We
first show that every 1 of 4 belongs to at least 2n~3 independent pairs.
Consider any 1 of 4 and let B be the matrix obtained by replacing it with
a 0. Since A is nearly decomposable, B is partly decomposable and it follows
that B is permutation equivalent to a matrix of the form
rB, 0O 0 « O A
B,y B, O .. O
(7) By By; By <+ O (r>2)

- Bl,l BI,Z b B,
\ P

where B, is an n; X n, fully indecomposable matrix. Without loss of generality we

may assume B has the form (7 ) and that A4 is obtained from B by replacing the
(1,n)-entry of B with a 1 (the 1 of A that was replaced by 0 to give B).
Since B, is fully indecomposable, when n,>>1, B, has at least two s in each
row and column and in particular ¢(B;)) >2n, (i=1,.,¢). Since A4 is fully in-
decomposable,

(B eeBy o 1)<l (k=2,000,1).
It now follows that the matrix obtained from A (or from (7)) by striking out
row 1 and column n has at least 2(n~2) +1=2n-3 1’s. Hence for each | of
A there are at least 2n— 3 other 1’s lying in a different row and column from
the given 1. It follows that 4

(8) o (Co(A)) > oA 2n=3)

2

where we have divided by 2 because some pairs of 1's accounted for on the
right hand side may be counted twice. Since o(A4) >2n, (6) follows from (8).
Suppose equality occurs in ( 6). Then it follows that 0(A4) =21 and hence A4 is
permutation epuivalent to F,, and it follows from Lemma 3, that o(C(F)) =
n(Zn-3). )

Before considering the case r=3, we obtain an additional lemma.

Lemma 5 Let A be an nx n nearly decomposable matrix of (s and 1’s
where n>>4. Let B be obtained from A4 by striking out a row or a codumn. Then

o (Cy(B)>(n- 12,

Proof Without loss of generality let B be obtained from A by striking out
row 1. Since A is nearly decomposable and n>2, J, is not a submatrix of B.
Thus o(C3(B)) is the number of independent pairs of 1’s of B. Since n>1 4
has at least two 1’s in each row and column. Thus B has at least two 1’s in

each row, and in particular d(B)>2(r—1).
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First suppose each 1 of the 2(n~1) 1’s of B known to exist belongs to at le-
ast n - 1 pairs of independent I’s. Then

2(n—=1)(n—-1)
2.

a(Cr(B)) > =(n-1)7,

where we have divided by 2 since each pair ma;' be counted twice.

Now suppose that some 1 of B (referred to as the given 1) belongs to at
most n— 2 pairs of independent 1’s. But since A is nearly decomposable, each
i of A belongs to a set of n independent I’s, and hence each 1 of B belongs to
a set S of n—1 independent 1’s. This set S already accounts for n— 2 pairs of

idependent s containing the given 1. Without loss of generality we may assu-

me that 4 3
a i n i Yn.2 1
* 1 Xy
B= . * . .
R . * .
‘ * 1 xn_ZJ
\

where the given 1| is in the upper right hand corner and the »# -1 displayed 1's
are those of S. All the asterisked positions must be occupied .by 0’s; otherwise
the given 1 belongs to more than n— 2 pairs of independent 1’s. Since 4 has at
least two 1’s in each row and column, a=x,=<*=x, ,=1. Hence

(1 | n e v 1)

0 1 1

R
B= . w . .

0 O
N /
We now have 2(n-1) s of B displayed. We count the number of pairs of

independent 1’s to which each belongs and divide by 2 to get a Jower estima-

te for the number of pairs of independent 1’s. We obtain
(1 in upper left) ;, 2(n-2) (1 in upper right), n—2
(1's in lower right) :(n-2)+(n~- 2) (the remaining 1's); (n—2)-(2(n-2)).

Hence

o(CHB)) > 3(”“25(’" 1)

3(n-2)(n—-1)
2

But for n>>4, >(n-1)*, and the lemma is proved.

By taking Ato be F, and B to be the matrix obtained from A by crossing

out row 1, we see the lemma is not true for n=3; the lower bound is 3 ra
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ther than the 4 given in the lemma.
Theorem 4. Let A be an nxn fully indecomposable matrix with n>4. Then

2n{n—2)(2n~-5)
3

If n=4, equality holds for all fully indecomposable 4. For n>>4 and A nearly

(9) g (C3(A))

decomposable, equality holds if and only if A4 is permutation epuivalent to F,.

Proof We prove the theorem by induction n_>4. It suffices to prove (9)
when A4 is nearly decomposable. Let 4 be nearly decomposable. If n=4, then
(9) becomes o(C;(A4))>16 which holds with equality, since every 3x 3 sub-
matrix B of A satisfies p(B) =3. Now let n>4, If 4 is permutation equivalent
to F,, then it follows from Lemma 3 that (9) holds with equality. Hence to
complete the proof, it suffices to show that when A is not permutation equival-
ent to F,, (9) is a strict inequality. We now suppose that 4 is not permutation
equivalent to F,. By Lemma 2 we may assume A has the form (5 ) where s is
an integer with 1<{s<{n-3 and A is nearly decomposable. We estimate the
number of 3 x 3 submatrices A[a]ﬂ] of A with termm rank equal to 3.

(i) a, FC{s+1,,n}: By the inductive assumption we get at least

2(n—5)(n—-5-2)(2n— 25 - 5)
3

(i) |aN{s+1,e,n}|=2=|BN{s5+1,+,n}|: By Theorem 3 we get at least
(25D o(C(A)) > (25— 1) (n—5)(2n—25-3).
(iii) JaN{s+ 1,5, n}|=1={B N {s+1,+e,n}|, Using Lemma 4 and the fact
that a fully indecomposable matrix which is not 1x | has at least 2 1’s in each row,

g (CYA)) >

we get (25*22)2(n~s)=(2s—2) (25-3) (n—35).

(iv) a,BC{1l,,s;; By Lemma 5 we get at least
<2s:;3): (25~ 3) (s;Z) (25 - 5) )
We now make use of the 1’s in the upper right and lower left blocks of
(5). ‘
(VyaN{l,ee,s) ={ 1}, BN{1,es,5} =0 or
a {1,585 =¢, BN{1,+e,s} ={s}; Using Lemma 5 we get
2(n-s- 1?2, for n—s>4,
(VD) @ {1, vy s} = {1,}, 1<j<s, |BN{1, %, s}|=1 or
l[a V{1, eyt =1, BN{1L, 0, s} = {i,s), 1<i<s:
Since every row and column of A4’ has at least two 1"s, we get at least
2(s-1)x(2) x2(n-s-1)=8(s-D(n—-s5s-1).
(viD) 1€ aC{1,e,s}, |BN{1,ee,s5}|=2 or
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SEBE(L, e s}, |aN{l,e=,s}|=2; By Lemma 4 we get at least
2(2s_é—2)=(23—3)(25~4).

Adding tlie estimates we obtain the following cubic polynomial in n.
4n® —18n* + (125 + 1) n+ (- 65> — 305 + 30)
3 .
The difference between the estimate for 03 (CT(A)) above and that given in (9)is

(125—=9n - ( ~65" =305 +30)
3 .

o(C3(A))

t

(10)

Since s<n-3, n>s+3 and
(125-9)n>(125 - 9) (s +3) = 125> + 275 - 27.

Using this estimate in (10), we see that (10) is positive, since s>1‘. It follows
that o(C3(A))>2n(n—2)(2n- 5)/3, completing the induction and proving the
theorem. :

In our proof of Theorem 4, Lemma 5 was crucial. It would seem that to
prove that o(C!( A))>0(C}(F,)) for r>3, one would need some analogue of
Lemma 5. In particular to prove o (Cs( A)) >0 (CIH F,)), one would like to be
able to estimate o(C3;(B)) where B is obtained from a nearly decomposable m.
trix by crossing out a row or column. But a good estimate seems to be difficv™
to obtain, since one cannot simply count the number of sets of three independ

%
's.
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