<u>\textit{\theta}\text{-refinability} and some related properties*</u>

Wu Lisheng

(Suzhou University)

Definition 1. A space is θ refinable, if every directed open cover of the space has a pointwise star-refining sequence by open covers.

It is well-known, that both strict p and θ -refinability imply $\underline{\theta}$ -refinability, but we don't know if strict p (or $\underline{\theta}$ -refinability) implies θ -refinability [1], and our paper is just discussing some facts related to this problem.

Theorem 1. Let X be a completely regular locally compact space, then the following conditions are mutually equivalent:

- (i) X is strict p,
- (ii) The collection \mathcal{I} which consists by all compact subsets of X has a pointwise star-refining sequence by open covers of X,
 - (iii) X is θ -refinable,
 - (iv) X is θ -refinable.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) are due to [2], (iii) \Rightarrow (iv) is evident, (iv) \Rightarrow (ii) Let X be a locally compact $\underline{\theta}$ -refinable space. For each $x \in X$, there exists an open neighborhood O_x such that \overline{O}_x is compact. Let $\mathcal{O} = \{O_x : x \in X\}$, then \mathcal{O}^F is a directed open cover of X, so it has a pointwise star-refining sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ by open covers of X. For each $x \in X$, there exists $n \in \mathbb{N}$ and $O \in \mathcal{O}^F$ such that $\operatorname{st}(x, \mathcal{U}_n) \subset O \subset \overline{O} \in \mathcal{A}$, so $\{\mathcal{U}_n : n \in \mathbb{N}\}$ is also a pointwise starrefining sequence of \mathcal{A} .

(iii) \Rightarrow (ii) \Rightarrow (i) Let $\{\mathcal{U}_n : n \in \mathbb{N}\}$ be a pointwise star-refining sequence of \mathcal{U}_n , where each \mathcal{U}_n is an open cover of X. No loss of generality, we may assume \mathcal{U}_{n+1} refines \mathcal{U}_n .

Suppose $x_n \in \operatorname{st}(x, \mathcal{U}_n)$, then there exist $n \in \mathbb{N}$ and $K \in \mathcal{M}$ such that $\{x_m\}_{m \geq n} \subset \operatorname{st}(x, \mathcal{U}_n) \subset K$, so $\{x_n\}_{n \in \mathbb{N}}$ has a cluster point, this shows X is a ω_{Δ} space. Now X is strict p in view of $\{3, \text{ theorem } 1.7\}$.

Lemma 1. Every θ -refinable space is θ -expandable.

Proof. Let $\mathcal{J} = \{F\}$ be a locally finite closed collection of X, Define $\mathcal{J} = \{X - (\mathcal{J} - \mathcal{J})^* : \mathcal{J} \subset \mathcal{J}, |\mathcal{J}| < \infty\}$, then \mathcal{J} is a directed open cover of X, so it has a pointwise star-refining sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ by open covers of X.

For each $F \in \mathcal{J}$, Let $\mathcal{O}_n(F) = \operatorname{st}(F, \mathcal{U}_n)$, then for each $n \in \mathbb{N}$, $\mathcal{O}_n = \{O_n(F): F \in \mathcal{J}\}$ is a open expansion of \mathcal{J} .

For each $x \in X$, there exists $n \in \mathbb{N}$ and $\widetilde{\mathfrak{g}} \subset \mathfrak{g}$, $|\widetilde{\mathfrak{g}}| < \infty$, such that $\operatorname{st}(x, \mathfrak{U}_n) \subset X$ $(\mathfrak{g} - \widetilde{\mathfrak{g}})^*$. If $F \not\in \widetilde{\mathfrak{g}}$, then $\operatorname{st}(x, \mathfrak{U}_n) \cap F = \emptyset$, and thus $x \notin \operatorname{st}(F, \mathfrak{U}_n) = \mathfrak{O}_n(F)$. so $|(\mathfrak{O}_n)_x| \leq |\widetilde{\mathfrak{g}}| < \infty$. i.e. X is θ -expandable.

Corollary 1. Every θ -refinable space is countably metacompact.

Proof. Because countably metacompactness is equal to \mathcal{K}_{θ} - θ -expandability.

Theorem 2. Every θ -refinable space is ultrapure.

Proof. Suppose \mathscr{U} is an open cover of $\underline{\theta}$ -refinable space $X.\mathscr{U}^F$ has a pointwise star-refining sequence $\{\mathscr{U}_n: n \in \mathbb{N}\}$ by open covers of X. Let $D_n = \{x \in X: st(x, \mathbf{\Psi}_n) \subset \mathbb{W} \text{ for some } \mathbb{W} \in \mathscr{U}^F\}$. then $\bigcup \{D_n: n \in \mathbb{N}\} = X$.

Let $\mathcal{D}_n = \{D_n \cap \nu : \nu \in \mathcal{D}_n\}$, then (i) $\bigcup \{\mathcal{D}_n^* : n \in \mathbb{N}\} = \bigcup \{D_n : n \in \mathbb{N}\} = X$, (ii) each member of \mathcal{D}_n is an open subset of subspace \mathcal{D}_n^* , (iii) $\{\operatorname{st}(x, \mathcal{D}_n) : n \in \mathbb{N}, x \in \mathcal{D}_n^*\}$ refines \mathcal{U}^F , this shows X is ultrapure,

Corollary 2. Every θ -refinable space is isocompact.

Theorem 3. Every σ -orthcompact. θ -refinable space is θ -refinable.

Proof. Let X be a σ -orthcompact. $\underline{\theta}$ -refinable space, \mathscr{U} be a directed open cover of X. In view of corollary 1 and (4, proposition 3.1), X is orthcompact. \mathscr{U} has a pointwise star-refining sequence $\{\mathscr{V}_n: n \in \mathbb{N}\}$ by open covers of X. Each \mathscr{V}_n has an interior-preserving refinement \mathscr{U}_n . Now \mathscr{U} has a pointwise star-refining sequence $\{\mathscr{U}_n: n \in \mathbb{N}\}$ by interior-preserving open covers of X, so X is θ -refinable in view of [5].

Corollary 3. Every σ -orthocompact strict p space is θ -refinable.

Theorem 4. Every pointwise-star-orthocompact $\underline{\theta}$ -refinable space is weak orthocompact.

Proof. Let X be a pointwise star-orthocompact θ -refinable space, \mathscr{U} be a directed open cover of X. Then \mathscr{U} has a pointwise star-refining sequence $\{\mathscr{V}_n: n \in \mathbb{N}\}$ by open covers of X. For each $n \in \mathbb{N}$, there exists an interior-preserving open cover $\mathscr{W}_n = \{W(n,x): x \in X\}$ such that for each $x \in X$, $x \in W_n$, $x \in X_n$.

For each $x \in X$, there exists $n_x \in N$ and $U(x) \in \mathcal{U}$ such that $\operatorname{st}(x, \mathcal{V}_{n_x}) \subset U(x)$. Let $X_n = \{x \in X: n_x = n\}$, $\widetilde{\mathcal{W}}_n = \{W(n,x): x \in X_n\}$. then $\bigcup \widetilde{\mathcal{W}}_n: n \in N\}$ is a σ -interior-preserving open refinement of \mathcal{U} . Similar to the proof of $\{4, \text{propersition } 3.1\}$, We can show \mathcal{U} has a interior-preserving open refinement, i.e., X is weak orthocompact.

Theorem 5. Every pointwise star-orthocompact strict p space is θ -refinable. **Proof.** Let X be a pointwise star-orthocompact strict p space, \mathcal{U} be a open cover of X. There exists a sequence $\{g_n; n \in \mathbb{N}\}$ by open covers of X such that:

- (i) For each $x \in X$, $P_x = \bigcap \{ st(x, a_n) : n \in \mathbb{N} \}$ is a compact set,
- (ii) The family $\{st(x, \mathcal{A}_n): n \in \mathbb{N}\}$ is a neighborhood base for the set P_x .
- (iii) g_{n+1} refines g_n

For each $n \in \mathbb{N}$, there exists an interior-preserving open cover $\mathcal{O}_n = \{O_n, x : x \in X\}$ Such that $x \in O_n, x \subseteq \operatorname{st}(x, g_n)$. Let $h(n, x) = \bigcap (\mathcal{O}_n)_x$, then $\{h(n, x) : x \in X\}$ is also an interior-preserving collection.

Define $\mathscr{F}_n = \{X - h(n,x) : x \in X\} \cup \{X\}$, $\mathscr{F} = \bigcup \{\mathscr{F}_n : n \in \mathbb{N}\}$, each \mathscr{F}_n is a closure-preserving closed cover of X.

For each $x \in X$, let $c(x) = \bigcap (\mathcal{F})_x = \bigcap \{\bigcap (\mathcal{F}_n)_x : n \in \mathbb{N}\}$. We claim for each $n \in \mathbb{N}$, $\bigcap (\mathcal{F}_n)_x \subseteq \operatorname{st}(x, g_n)$. In fact, for each $z \notin \operatorname{st}(x, g_n)$, we have $x \notin h(n, z)$, otherwise $x \in h(n, z) \subseteq O_{n, z} \subseteq \operatorname{st}(z, g_n)$ this would implies $z \in \operatorname{st}(x, g_n)$, a contradiction.

So we have $z \in h(n,z) \subset \bigcup \{h(n,y) : x \notin h(n,y)\}$, i.e.

$$z \notin X - \bigcup \{h(n,y), x \notin h(n,y)\} = \bigcap (\mathscr{G}_n)_{x \in A}$$

Thus $c(x) \subset p_x$ for each $x \in X$, and c(x) is also a compact set.

For each $x \in X$, there exists $U_x \in \mathcal{U}$ such that $c(x) \subset P_x \subset U_x$, then there exists $n_x \in \mathbb{N}$ such that $c(x) \subset P_x \subset \operatorname{st}(x, g_n) \subset U_x$, so $c(x) \subset \bigcap (\mathcal{G}_n)_x \subset \operatorname{st}(x, g_n) \subset U_x$.

Let $X_n = \{x \in X: n_x = n\}$, $\mathcal{K}_n^x = \{\bigcap (\mathcal{F}_n)_x : x \in X_n\}$. For each $n \in \mathbb{N}$, \mathcal{K}_n is a partial refinement of \mathcal{U} , and \mathcal{K}_n is a closed-preserving closed collection. In fact, if $y \in \overline{\bigcup \{\bigcap (\mathcal{F}_n)_x : x \in \widetilde{X} \subset X\}}$, then h(n,y) is an open neighborhood of y, and there exists $x \in \widetilde{X}$ such that $h(n,y) \cap (\bigcap (\mathcal{F}_n)_x) \neq \emptyset$, i.e. $h(n,y) \cap (X - \bigcup \{h(n,z) : x \notin h(n,z)\} \neq \emptyset$, so $x \in h(n,y)$.

For each $z \in X$, if $x \notin h(n,z)$, then $y \notin h(n,z)$, otherwise from $y \in h(n,z)$ would implies $x \in h(n,y) \subset h(n,z)$, this is impossible. Thus $y \in \bigcap (\mathscr{G}_n)_x$, i.e. \mathfrak{K}_n is a closure-preserving collection. Now \mathscr{U} has a σ -cloure-preserving closed refinement $\mathfrak{K} = \bigcup \{\mathfrak{K}_n : n \in \mathbb{N}\}$, i.e. X is θ -refinable.

Corollary 4. Every pointwise star-orthocompact strict p space is also an orthocompact $\Sigma^{\#}$ space.

Definition 2. A open cover $\mathscr{A} = \bigcup \{ \mathscr{V}_n : n \in \mathbb{N} \}$ is called a boundly weak $\overline{\theta}$ -cover. if

- (i) $\{\Psi_n^*: n \in \mathbb{N}\}$ is point-finite.
- (ii) There exists $k \in \mathbb{N}$ such that for each $x \in X$, there exists $n \in \mathbb{N}$ such that $\operatorname{ord}(x, q_n) \leq k$.

Theorem 6. Let X be a space, then the following conditions are mutually equivalent.

(i) X is discrete θ -expandable, (ii) Every boundly weak $\overline{\theta}$ -cover of X hasa θ -sequence by open refinement. (iii) Every c-cover has a θ -sequence by open refinement.

Proof. (i) \Rightarrow (ii). Suppose X is discrete θ -expandable, \mathscr{Q} is a boundly

weak $\overline{\theta}$ -cover of X. Then \mathscr{U} has a refinement $\mathscr{D} = \bigcup \{\mathscr{D}_n; n \in \mathbb{N}\}$ such that for each $n \in \mathbb{N}$, $\{p - \bigcup \{\mathscr{D}_1^*; 1 \le i \le n\}; P \in \mathscr{D}_n\}$ is a discrete closed collection in $X = \bigcup \{\mathscr{D}_1^*; 1 \le i \le n\}$ (See [7])

For each $P \in \mathcal{P}$, choose an $U_P \in \mathcal{U}$ such that $P \subset U_P$. Since \mathcal{P}_1 is a discrete closed collection in X, \mathcal{P}_1 has open expansion $\mathcal{P}_n = \{V_{n_1}, P: P \in \mathcal{P}_1\}$ for each $n_1 \in N$ such that For each $P \in \mathcal{P}_1$, $P \subset V_n$, $P \subset U_P$, and for each $x \in X$, there exists n_1 such that $\operatorname{ord}(x, \mathcal{P}_{n_1}) < \infty$.

Suppose for each $1 \leqslant k < j$, each $(n_1, \dots, n_k) \in \mathbb{N}^k$, we have constructed open collection $\mathcal{U}_{n_1, \dots, n_k} = \{ V_{n_1, \dots, n_k, \mathbb{P}} P \in \mathcal{B}_k \}$ such that $P - \bigcup \{ \mathcal{V}_{n_1, \dots, n_k, \mathbb{P}}^* = \{ v_{n_1, \dots, n_k, \mathbb{P}} P \in \mathcal{B}_k \}$ such that $P - \bigcup \{ \mathcal{V}_{n_1, \dots, n_k, \mathbb{P}}^* = \{ v_{n_1, \dots, n_k, \mathbb{P}} \in \mathcal{B}_k \}$. For each $P \in \mathcal{B}_k$, and for each x, each $(n_1, \dots, n_{k-1}) \in \mathbb{N}^{k-1}$, there exists n_k such that $\operatorname{ord}(x, \dots, n_k, \dots, n_k) < \infty$. We now construct the collection $\mathcal{V}_{n_1, \dots, n_k}$.

Firstly, in view of the inductive conditions, for each $1 \le k \le j$, holds $\bigcup \{\mathscr{P}_{i}^*: 1 \le i \le k\} \subset \bigcup \{\mathscr{V}_{n_1, \dots, n_i}^*: 1 \le i \le k\}$. In fact, it holds for k = 1 is evident, suppose $\bigcup \{\mathscr{P}_{i}^*: 1 \le i \le s\} \subset \bigcup \{\mathscr{V}_{n_1, \dots, n_i}^*: 1 \le i \le s\}$ for each $s \le s + 1 \le j$, then $\bigcup \{\mathscr{V}_{n_1, \dots, n_i}^*: 1 \le i \le s\} \cup \{\mathscr{V}_{n_1, \dots, n_i}^*: 1 \le i \le s\} \cup \{\mathscr{P}_{n_1, \dots, n_i}^*: 1 \le i \le s\} \cup \{\mathscr{P}_{n_1, \dots, n_i}^*: 1 \le i \le s\} \cup \{\mathscr{P}_{n_1, \dots, n_i}^*: 1 \le i \le s\} \cup \{\mathscr{P}_{i}^*: 1 \le i \le s + 1\}$. Thus we have $\bigcup \{\mathscr{P}_{i}^*: 1 \le i \le j\} \subset \bigcup \{\mathscr{V}_{n_1, \dots, n_i}^*: 1 \le i \le j\}$.

 $\mathscr{P}_{j}^{1} = \{P - \bigcup \{\mathcal{V}_{n_{1}, \dots, n_{i}}^{*}; 1 \leq i < j-1\}; P \in \mathscr{P}_{j}\}\$ is a discrete closed collection in X, so there exists open collections $\mathcal{V}_{n_{1}, \dots, n_{j}} = \{V_{n_{1}, \dots, n_{j}, p}; P \in \mathscr{P}_{j}\}\$ such that $P - \bigcup \{\mathcal{V}_{n_{1}, \dots, n_{i}}^{*}; 1 \leq i < j-1\} \subseteq V_{n_{1}, \dots, n_{j}, p} \subseteq U_{P} - \bigcup \{\mathcal{P}_{i}^{*}; 1 \leq i < j\}\$ for each $P \in \mathscr{P}_{j}$, and for each $x \in X$ each $(n_{1}, \dots, n_{j-1}) \in N^{j-1}$, there exists n_{j} such that $\operatorname{ord}(x, \mathcal{V}_{n_{1}, \dots, n_{j}}) < \infty$.

Thus we can construct for each $k \in \mathbb{N}$, each $(n_1, \dots, n_k) \in \mathbb{N}^k$ an open collection $\mathcal{Y}_{n_1, \dots, n_k}$ such that

(i) ψ_{n_1,\dots,n_k} is a partial refinement of \mathcal{U} ,

(ii)
$$q_{n_1, \dots, n_k}$$
 ($\bigcup \{ \{g_{n_i}^* : 1 \le i < k-1 \}) = \emptyset$,

(iii)
$$\bigcup \{\mathscr{S}_{i}^{\star}: 1 \leq i \leq k\} \supset \bigcup \{\mathscr{I}_{n_{i}, \dots, n_{i}}^{\star}: 1 \leq i \leq k\}.$$

Define $\psi_{(n_1,\dots,n_m)} = \bigcup \{ \psi_{n_1,\dots,n_i}^i : i \in \mathbb{N}, n_i = n_m \text{ when } i \geqslant m \}$ $\psi = \{ \psi_{(n_1,\dots,n_m)}^i : m \in \mathbb{N}, (n_1,\dots,n_m) \in \mathbb{N}^m \}.$

then \mathscr{V} is a θ -sequence. In fact, for each $x \in X$, there exists $m \in \mathbb{N}$ such that $x \in \mathscr{Y}_{m}^*$, there exists n_1 such that $\operatorname{ord}(x, \mathscr{V}_{n_1}) < \infty$, then there exists n_2, \dots, n_m one after one such that for each $1 \le i \le m$ $\operatorname{ord}(x, \mathscr{V}_{n_1, \dots, n_n}) < \infty$, so ord $(x, x) = n_1 + n_2 + n_3 + n_4 + n_4 + n_5 +$

$$V_{(n_1, \dots, n_m)}^{(n_1, \dots, n_m)} = \sum_{i=1}^m \text{ord } (x, V_{n_1, \dots, n_i}) < \infty.$$

i.e. \mathcal{U} has a θ -sequence by open refinement.

(ii) \Rightarrow (iii). Suppose $\mathscr{U} = \{U_a : a \in A\}$ is a C-cover, $i \cdot e$, for each $a \in A$, $U_a = \bigcap_{\beta \neq a} \bigcup_{\gamma \neq \beta} U_{\gamma}$. Define $F_a = X - \bigcup_{\beta \neq a} U_{\beta}$, then for each $a \in A$, $F_a \subset U_a$ and X-

 $\bigcup \{F_a: a \in A\} \subset \bigcap \{U_a: a \in A\}$. Let $\mathcal{V}_1 = \{X - \bigcup \{F_a: a \in A\}\}, \mathcal{V}_2 = \mathcal{U}$, then $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$ is a boundly weak- $\overline{\theta}$ -cover which refines \mathcal{U} . so \mathcal{U} has a θ -sequence by open refinement.

 $(iii) \Rightarrow (i)$ is due to [8, Lemma 2, 7].

Corollary 5, Let X be a space which has property $B(D, \omega)$, then

- (1) X is collectionwise normal iff X is paracompact,
- (2) X is collectionwise subnormal iff X is subparacompact,
- $(\ 3\)\ X$ is almost discrete expandable iff X is metacompact

Similar to Theorem 6, we have

Theorem 7 Let X be a θ -expandable space, \mathscr{U} be a open cover of X and has a refinement $\mathscr{P} = \bigcup \{ \mathscr{P}_n, n \in \mathbb{N} \}$ such that, for each $n \in \mathbb{N}$, $\{P - \bigcup \{ \mathscr{P}_i^* : 1 \le i < n \} : P \in \mathscr{P}_n \}$ is a locally finite closed collection in $X - \bigcup \{ \mathscr{P}_i^* : 1 \le i < n \}$, then \mathscr{U} has a θ -sequence by open refinement.

Remark Theorem 7 shows that if $\underline{\theta}$ -refinability implies property $B(LF, \omega)$, then θ -refinability is equal to θ -refinability.

References

- [1] H. Junnila, Three Covering Properties, Surveys in General Topology, Academic, Press 1980.
- [2] J. Chaber, H. Junnila, On θ -refinability of strict p-spaces, Gen. Top. Appl. 10 (1979) 233-238.
- [3] D. K. Burke, On p-spaces and ω_{Λ} -spaces, Pacific J. Math. 35(1970) 285-296.
- [4] P. Fletcher, W. F. Lindgren, Orthocompactness and Strong Čech Completeness in Moore Spaces, Duke J. Math. 39(1972) 753-766.
- (5) H. Junnila, On Submetacompactness, Top. Proc. 3(1978) 375-405.
- [6] G. Gruenhage, On closed images of orthocompact spaces, Proc. Amer. Math. Soc. 77(1979) 389-394.
- [7] Long Bing, Some separating or covering properties, (to appear)
- (8) Zong Ning, expandability of discrete collections (to appear)
- [9] J. C. Smith, Irreducible Spaces and Property b₁, Top. Proc. 5(1980) 187-200.