Strong Consistency of Non-parametric Regression Estimates with Censored Data*

Zheng Zukang (郑祖康)
(Fudan University)

Abstract

Let (X, Y) be an $\mathbb{R}^d \times \mathbb{R}$ valued random vector with $E|Y| < \infty$ and (X_1, Y_1) (X_2, Y_2) , ..., (X_n, Y_n) be i.i.d. observations of (X, Y). To estimate the regres sion function m(x) = E(Y|X = x), Stone [1] suggested

$$m_n(x) = \sum_{i=1}^n W_{ni}(x) Y_i ,$$

where $W_{ni}(x) = W_{ni}(x, X_1, X_2, \dots, X_n)$ ($i = 1, 2, \dots, n$) are weight functions. Devroye ^[2] and Chen Xiru ^[3] established the strong consistency of $M_n(x)$.

In this paper, we discuss the case that $\{Y_i\}$ are censored by $\{t_i\}$, where- $\{t_i\}$ are i.i.d. random variables and also independent of $\{Y_i\}$. Under certain conditions we still obtain the strong consistency of $m_n(x)$.

Let (X, Y) be an $\mathbb{R}^d \times \mathbb{R}$ valued random vector with $E|Y| < \infty$. Denote the reg ression function by m(x) = E(Y|X=x) and let (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) be i.i.d. observations of (X, Y). To estimate m(x), Stone [1] suggested the following form

(1)
$$m_n(x) = \sum_{i=1}^n W_{ni}(x) Y_i$$
.

where $W_{ni}(x) = W_{ni}(x, X_1, X_2, \dots, X_n)$ $(i = 1, 2, \dots, n)$ are weight functions selected as following:

For a fixed $x \in \mathbb{R}^d$, rerange the observations (X_1, Y_1) , ..., (X_n, Y_n) according to

$$||X_{R_1} - x|| < ||X_{R_2} - x|| < \cdots < ||X_{R_n} - x|| ,$$

and break ties by comparing indices, where ||x|| can be taken, for example, as the usual Euclidean norm or $||x|| = \max(|X^{(1)}|, |X^{(2)}|, \dots, |X^{(d)}|)$ for $x = (X^{(1)}, X^{(2)}, \dots, X^{(d)})$. Suppose that $\{V_{ni}, i > 1\}$ is a given series of weights, i.e. $V_{ni} > 0$, $\sum_{i=1}^{n} V_{ni} = 1$ for all n and i. Then we take

^{*} Received Oct. 4, 1985.

(3)
$$W_{nR_1}(x) = V_{ni}$$
 $i = 1, 2, \dots, n.$

Devroye [2] established the strong consistency of $m_n(x)$ under the following conditions:

- (A1) Y is bounded.
- (A2) There exists a sequence of positive integers $k = k_n$ such that

$$\frac{k}{n} \to 0$$
, $\frac{\log n}{k} \to 0$ (as $n \to \infty$), $\sup_{n} (k \max_{1 \le i \le k} V_{ni}) < \infty$, $\sum_{i \ge k} V_{ni} = o(1)$ as $n \to \infty$.

In 1985, Chen Xiru [3] improved the conditions by

- (B1) Y is bounded.
- (B2) There exists a sequence of positive integers $k = k_n$ such that

$$\frac{k}{n} \rightarrow 0$$
, $\frac{\log n}{k} \rightarrow 0$ (as $n \rightarrow \infty$), $\sum_{i>k} V_{ni} = o(1)$ a.s., $\sum_{i=1}^{k} V_{ni}^2 = o(\frac{1}{\log n})$ a.s..

(B3) $\lim_{\varepsilon \to 0} C(\varepsilon) = 0$ a.s. where $C(\varepsilon) = \sup_{n} \{ \max(\sum_{i}^{\prime} V_{ni} : \text{ the number of terms contained in } \sum_{i}^{\prime} \text{ does not exceed } k\varepsilon) \}$.

In this paper we discuss the case that $\{Y_i\}$ are censored by random variables $\{t_i\}$. It means that we can not observe Y_i and instead of $Z_i = \min(Y_i, t_i)$, $\delta_i = I_{(Y_i < t_i)}$. We always suppose that t_i i.i.d. and independent of $\{Y_i\}$. Let F_x be the distribution function of Y for fixed X and Y be the distribution function of Y. Denote $Y_i = \inf\{u_i, F_x(u) = 1\}$, $Y_i = \inf\{u_i, G(u) = 1\}$. It is clear that if the censoring is too heavy we can not get the enough information of Y_i . As a basic assumption, it is reasonable that

$$\sup_{x} \tau_{F_{x}} \tau_{G} < \infty.$$

where x over the range of X. We denote $H_x(t) = P_x(Z_t \le t)$, $\tau_{H_x} = \inf\{u: H_x(u) = 1\}$. Thus $\tau_{H_x} = \tau_{F_x}$ for any x, furthermore we let

(5)
$$y = G(\sup_{\mathbf{r}} \tau_{F_{\mathbf{r}}}) < 1$$
.

Now our problem here is how to fit the regression on the basis of only observing (δ_i, Z_i, X_i) . A naive idea is that if Y_i is censored we add something to it to make up for the censored part and if Y_i is uncensored we also modify it appropriately to ensure unbiasedness in the sense that the modification Y_i^* has the same expectation as Y_i . In view of this consideration, we always assume G continuous and suggest using Y_i^* of the form (for known G)

$$(6) Y_i^* = \delta_i \varphi_i (Z_i) + (1 - \delta_i) \varphi_2(Z_i)$$

where φ_1 , φ_2 are continuous on $(-\infty, a]$ $(a < \tau_G)^{\alpha}$ such that

(7)
$$\begin{cases} (i) \left[1 - G(Y)\right] \varphi_1(Y) + \int_{-\infty}^{r} \varphi_2(t) dG(t) = Y \\ (ii) \varphi_1, \varphi_2 \text{ are independent of distribution of } (X, Y) \text{ (but may depend on } G) \end{cases}$$

We used this technical in the censored data linear regression model [4], and we will show the success in non-parametric case. The class of all pairs (φ_1, φ_2) of such functions will be denoted by \widetilde{K} . For simplicity we also use \widetilde{K} to denote the class of all "estimator" $Y_i^* = \delta_i \varphi_i(Z_i) + (1 - \delta_i) \varphi_2(Z_i)$ of Y_i with $(\varphi_1, \varphi_2) \in \widetilde{K}$. Note that

$$\begin{split} E\left(Y_{i}^{\bullet} \middle| X_{i}\right) &= E_{X_{i}} \left(\delta_{i} \varphi_{1}\left(Z_{i}\right) + (1 - \delta_{i}) \varphi_{2}\left(Z_{i}\right)\right) \\ &= \iint_{t > y} \varphi_{1}\left(y\right) \, \mathrm{d}G\left(t\right) \, \mathrm{d}F_{X_{i}}\left(y\right) + \iint_{t < y} \varphi_{2}\left(t\right) \, \mathrm{d}G\left(t\right) \, \mathrm{d}F_{X_{i}}\left(y\right) \\ &= \int_{-\infty}^{\infty} \varphi_{1}\left(y\right) \left(\int_{y}^{\infty} \mathrm{d}G\left(t\right)\right) \, \mathrm{d}F_{X_{i}}\left(y\right) + \int_{-\infty}^{\infty} \left(\int_{-\infty}^{y} \varphi_{2}\left(t\right) \, \mathrm{d}G\left(t\right)\right) \, \mathrm{d}F_{X_{i}}\left(y\right) \\ &= \int_{-\infty}^{\infty} \left[1 - G\left(y\right)\right] \varphi_{1}\left(y\right) \, \mathrm{d}F_{X_{i}}\left(y\right) + \int_{-\infty}^{y} \left(\int_{-\infty}^{y} \varphi_{2}\left(t\right) \, \mathrm{d}G\left(t\right)\right) \, \mathrm{d}F_{X_{i}}\left(y\right) \\ &= \int_{-\infty}^{\infty} \left\{\left[1 - G\left(y\right)\right] \varphi_{1}\left(y\right) + \int_{-\infty}^{y} \varphi_{2}\left(t\right) \, \mathrm{d}G\left(t\right)\right\} \, \mathrm{d}F_{X_{i}}\left(y\right) \\ &= \int_{-\infty}^{\infty} y \, \mathrm{d}F_{X_{i}}\left(y\right) = E\left(Y_{i} \middle| X_{i}\right). \end{split}$$

We will give some examples below (omiting the substript i for simplicity). **Example 1** Suppose that we mant to keep $Y^* = Y$ when Y is uncensored (i. e., $\delta = 1$). Then $\varphi_1(Z) = Z$. Assuming that G has continuous positive density g, we have $\varphi_2(Z) = Z + G(Z)/g(Z)$ by (7). Therefore $Y^* = \delta Z + (1 - \delta)(Z + G(Z)/g(Z))$.

Example 2 In developing least squares estimates for the linear regression model with censored response, Koul, Susarla and Van Ryzin^[5] proposed to replace the censored response by 0. This means that $\varphi_2(Z) = 0$. Then (7) leads the solution $\varphi_1(Z) = Z/(1-G(Z))$.

Example 3 Suppose that we want to augment the censored and the uncensored data equally. This means that $\varphi_1(Z) = \varphi_2(Z)$. We have

$$\varphi_{1}(Z) = \varphi_{2}(Z) = \int_{-\infty}^{Z} \frac{ds}{1 - G(s)} ,$$
since
$$(1 - G(y)) \int_{-\infty}^{y} \frac{ds}{1 - G(s)} + \int_{-\infty}^{y} (\int_{-\infty}^{y} \frac{ds}{1 - G(s)}) dG(t)$$

$$= (1 - G(y)) \int_{-\infty}^{y} \frac{ds}{1 - G(s)} + \int_{-\infty}^{y} \frac{G(y) - G(s)}{1 - G(s)} ds$$

$$= (1 - G(y)) \int_{-\infty}^{y} \frac{ds}{1 - G(s)} + \int_{-\infty}^{y} ds - \int_{-\infty}^{y} \frac{1 - G(y)}{1 - G(s)} ds = y .$$

Now we turn to non-parametric regression estimates. We assume that $G\left(t\right)$ is known first and consider the estimator

(8)
$$m_n^*(x) = \sum_{i=1}^n W_{ni}(x) Y_i^* ...$$

Theorem 1 If (B1), (B2), (B3) and (4) hold, $(\varphi_1, \varphi_2) \in \widetilde{K}$, then $\lim_n m_n(x) = m(x)$ a.s..

Proof
$$m_n^*(x) - m(x) = \sum_{i=1}^n W_{ni}(x) (Y_i^* - m(x)) = \sum_{i=1}^n W_{ni}(x) (Y_i^* - Y_i)$$

 $+ \sum_{i=1}^n W_{ni}(x) (Y_i - m(X_i)) + \sum_{i=1}^n W_{ni}(x) (m(X_i) - m(x))$
 $= \sum_{i=1}^n W_{nR_i}(x) (Y_{R_i} - m(X_{R_i})) + \sum_{i=1}^n W_{nR_i}(x) (m(X_{R_i}) - m(x))$
 $+ \sum_{i>k} W_{nR_i}(x) (Y_{R_i} - m(X_{R_i})) + \sum_{i=1}^k W_{nR_i}(x) (Y_{R_i}^* - Y_{R_i}) + \sum_{i>k} W_{nR_i}(x) (Y_{R_i}^* - Y_{R_i})$
 $\stackrel{\triangle}{=} J_{1n}(x) + J_{2n}(x) + J_{3n}(x) + J_{4n}(x) + J_{5n}(x)$.

Chen Xiru proved that $J_{1n}(x) + J_{2n}(x) + J_{3n}(x) \rightarrow 0$ a.s. We only need to dedeal with $J_{4n}(x)$ and $J_{5n}(x)$.

Since that Y_i are bounded and $y = G(\sup_X \tau_{F_X}) < 1$, there is a constant A such that -A < Y < A and G(A) < 1. Therefore on [-A, A] φ_1 , φ_2 are continuous and there exists constant B such that $|\varphi_1(Z)| < B$, $|\varphi_2(Z)| < B$ for $Z = \min(Y, t) < Y < A$. It leads that $|Y^*| = |\delta \varphi_1(Z) + (1 - \delta)\varphi_2(Z)| < \max\{|\varphi_1(Z)|, |\varphi_2(Z)|\} < B$, i.e., Y^* bounded. On the other hand $EY^* = E(E(Y^*|X)) = E(E(Y|X)) = EY$. Let $u_i = \frac{2(Y_i^* - Y_i)}{5(A + B)}$ be independent bounded $(|u_i| < 2/5)$ random variables with mean zero. For given x, X_1, \dots, X_n the conditional distribution of $\frac{2J_{4n}(x)}{5(A + B)}$ is the same as that of $\sum_{i=1}^k c_i u_i$, where c_1, \dots, c_k are constants which satisfy $d_n = \sum_{i=1}^k c_i^2 = \sum_{i=1}^k W_{nR_i}^2(x) = o(\frac{1}{\log n})$.

Now we can use the following inequality due to Tao Bo-Cheng Ping $^{[6]}$, just as Chen Xiru used for J_{1n} part:

(9)
$$E\left(\sum_{i=1}^{n}a_{i}u_{i}\right)^{2s} \leqslant 3^{s}\left(2s-1\right)!! \max_{1 \leq i \leq n}Eu_{i}^{2s} \qquad (s=1,2,\cdots)$$

where $\{u_i\}$ are independent random variables with mean zero and $\{a_i\}$ satisfy

$$\sum a_i^2 = 1 \qquad ((2s-1)!! = \frac{(2s)!}{2^s \cdot s!}).$$

Let $T_n = \sum_{i=1}^k c_i u_i / \sqrt{d_n}$, then

$$P(|\sum_{i=1}^{k} c_{i}u_{i}| > \varepsilon) = P(|T_{n}| > \varepsilon/\sqrt{d_{n}}) \le \exp(-\varepsilon^{2}/d_{n}) E(e^{T_{n}^{2}})$$

$$= \exp(-\varepsilon^{2}/d_{n}) \sum_{s=0}^{\infty} \frac{1}{s!} ET_{n}^{2s} \le \exp(-\varepsilon^{2}/d_{n}) [1 + \sum_{s=1}^{\infty} \frac{1}{s!} 3^{s} (2s-1)!! (\frac{2}{5})^{2s}]$$

$$\leq \exp(-\varepsilon^2/d_n)\left(1+\sum_{s=1}^{\infty}\left(\frac{3\cdot 2\cdot 2^2}{25}\right)^s\right) \leq 25\exp(-\varepsilon^2/d_n)$$
 and $\sum_{n=1}^{\infty}P\left(\left|\sum_{i=1}^k c_i u_i\right| \gg \varepsilon\right)$

 $<25\sum_{n=1}^{\infty}\exp{(-\varepsilon^2/d_n)}<\infty$. Hence by Borel-Cantelli lemma we have proved hat for any fixed $X_i=x_i$ $\lim_{n\to\infty}J_{4n}(x,x_1,Y_1,\cdots,x_n,Y_n)=0$ a.s. This in turn proves that $\lim_{n\to\infty}J_{4n}(x)=0$ a.s..

On the other hand, by the boundedness of $Y_i^* - Y_i$, it is clear that $J_{5n}(x) \rightarrow 0$ a.s. according to (B2).

If G(t) is unknown, we can think that t_i are censored by Y_i and use Kaplan-Meier^[7] estimator $\hat{G}_n(t)$ instead of G(t), where

(10)
$$1 - G_n(t) = \prod_{z_i \le t} \left(1 - \frac{1}{n - i + 1}\right)^{(1 - \delta_i)}$$

It is well known that

(11)
$$\sup_{-\infty < t \le t_0} \left| \stackrel{\wedge}{G}_n(t) - G(t) \right| \to 0 \quad \text{a.s.} \quad (t_0 < \sup_X \tau_{H_X})$$

From now on, we use the notations $\varphi_1(Z_i, G)$, $\varphi_2(Z_i, G)$ in place of $\varphi_1(Z_i)$, $\varphi_2(Z_i)$ respectively to signify their dependence on G. For G unknown case, it is natural to substitute it by an estimator G_n^* and use $\varphi_1(Z_i, G_n^*)$, $\varphi_2(Z_i, G_n^*)$ instead

We will restrict (φ_1, φ_2) to certain "nice" subsets of the class \widetilde{K} to be defined below.

Let \widetilde{K}^* be the class of all $(\varphi_1, \varphi_2) \in \widetilde{K}$ with the following boundedness property: For every d with 1 > d > 0 and every s, there exists C such that

$$\max_{\substack{j=1,2\\t\leqslant s}} |\varphi_j(t,G')| \leqslant C$$

for all distribution function G' with G'(s) < d.

Let \widetilde{K}_{C}^{*} be the class of all $(\varphi_{1}, \varphi_{2}) \in \widetilde{K}^{*}$ with the following continuity property at the censoring distribution $G_{:}$

For every $\varepsilon > 0$ and every s with G(s) < 1, there exists $\eta > 0$ such that

(12)
$$\max_{\substack{j \geq 1 \\ j \geq s}} \left| \varphi_j(t, G') - \varphi_j(t, G) \right| \leq \varepsilon.$$

for all distribution function G' with $\sup_{t \in S} |G'(t) - G(t)| < \eta$.

We can verify that (φ_1, φ_2) in example 2 and example 3 belong to \widetilde{K}_C^* . We suppose that G and all the conditional distribution functions F_X are continuous in the rest part of this paper.

Theorem 2 Suppose that we know $y = G(\sup_{X} \tau_{H_X}) < 1$. Define

 $\widetilde{G}_n(t) = \begin{cases} \widehat{G}_n(t) & \text{(Kaplan-Meier e timator) if } \widehat{G}_n(t) < \gamma, \\ \gamma & \text{if } t < \max Z_i; \text{ and } \widehat{G}_n(t) > \gamma. \end{cases}$ and $\widehat{Y}_i^* = \delta_i \varphi_1(Z_i, \widetilde{G}_n) + (1 - \delta_i) \varphi_2(Z_i, \widetilde{G}_n). \text{ For fixed } x,$

$$\hat{m}_{n}^{*}(x) \stackrel{\triangle}{=} \sum_{i=1}^{n} W_{ni}(x) \hat{Y}_{i}^{*}.$$

If $(\varphi_1, \varphi_2) \in \widetilde{K}_c^*$ and (B1), (B2), (B3) hold, then $\lim_{n \to \infty} \widehat{m}_n^*(x) = m(x)$ a.s.

We have proved that $J_{1n}(x)$, $J_{2n}(x)$, $J_{3n}(x)$, $J_{4n}(x)$, $J_{5n}(x)$ converge to zero a.s. For $J_{6n}(x)$, let $\varepsilon > 0$ arbitrary small and we can find $T^* < \infty$ such that $1 > \inf_{x} H_{x}$

 $(T^*)>1-\varepsilon$. Thus

$$|J_{6n}(x)| \leq |\sum_{i=1}^{n} W_{ni}(x) (\hat{Y}_{i}^{*} - Y_{i}^{*}) I_{(Z_{i} \leq T^{*})}| + |\sum_{i=1}^{n} W_{ni}(x) (\hat{Y}_{i}^{*} - Y_{i}^{*}) I_{(Z_{i} > T^{*})}| \stackrel{\triangle}{=} |I_{n1}| + |I_{n2}|;$$

$$|I_{n1}| \leq \sup_{i} |\hat{Y}_{i}^{*} - Y_{i}^{*}| I_{(Z_{i} \leq T^{*})}$$

$$= \sup_{i} \left| (\delta_{i} \varphi_{1}(Z_{i}, \widetilde{G}_{n}) + (1 - \delta_{i}) \varphi_{2}(Z_{i}, \widetilde{G}_{n})) - (\delta_{i} \varphi_{1}(Z_{i}, G) + (1 - \delta_{i}) \varphi_{2}(Z_{i}, G)) \right| I_{(Z_{i} \leq T^{\bullet})}$$

$$\leq \sup_{i} \max_{i=1,2} \left| |\varphi_{1}(Z_{i}, \widetilde{G}_{n}) - \varphi_{1}(Z_{i}, G)|, |\varphi_{2}(Z_{i}, \widetilde{G}_{n}) - \varphi_{2}(Z_{i}, G)| \right| I_{(Z_{i} \leq T^{\bullet})}.$$

By the definition of \widetilde{K}_c^* and the consistency of Kaplan-Meier estimator $|I_{n1}| \rightarrow 0$ as $\sup_{u < T^*} |\widetilde{G}_n(u) - G(u)| \rightarrow 0$.

$$\begin{split} |I_{n2}| & \leq \sum_{i=1}^{n} W_{ni}(x) |\hat{Y}_{i}^{*} - Y_{i}^{*}| I_{(Z_{i} > T^{*})} \\ & \leq \sup_{i} \left(|\hat{Y}_{i}^{*}| + |Y_{i}^{*}| \right) \cdot \sum_{i=1}^{n} W_{ni}(x) I_{(Z_{i} > T^{*})} \leq D \sum_{i=1}^{n} W_{ni}(x) I_{(Z_{i} > T^{*})} \\ & = D \cdot \sum_{i=1}^{n} \left[W_{ni}(x) I_{(Z_{i} > T^{*})} - E(W_{ni}(x) I_{(Z_{i} > T^{*})} | X_{1}, \cdots X_{n}) \right] \\ & + D \cdot \sum_{i=1}^{n} E(W_{ni}(x) I_{(Z_{i} > T^{*})} | X_{1}, \cdots X_{n}) \\ & = D \cdot \sum_{i=1}^{n} W_{ni}(x) \left[I_{(Z_{i} > T^{*})} - E(I_{(Z_{i} > T^{*})} | X_{i}) \right] + D \cdot \sum_{i=1}^{n} W_{ni}(x) P(Z_{i} > T^{*} | X_{i}), \end{split}$$

where D is a constant (by the definitions of $\widetilde{\mathbf{K}}^*$ and \widetilde{G}_n).

For given $X_i = x_i$, let $u_i' = I_{(Z_i > T^{\bullet})} - E(I_{(Z_i > T^{\bullet})} | X_i)$ and use (9) again, we get $\sum_{i=1}^{n} W_{ni}(x) \left(I_{(Z_i > T^{\bullet})} - E(I_{(Z_i > T^{\bullet})} | X_i) \right) \to 0 \text{ a.s. On the other hand}$ $\sum_{i=1}^{n} W_{ni}(x) E(I_{(Z_i > T^{\bullet})} | X_i) = \sum_{i=1}^{n} W_{ni}(x) (1 - H_{X_i}(T^{\bullet})) < \sum_{i=1}^{n} W_{ni}(x) \sup_{X} (1 - H_{X}(T^{\bullet})) < \varepsilon.$

It completes the proof.

References

- [1] Stone, C. T., Consistent Nonparametric Regression, Ann. Stat., 1977, Vol 5, 595-645.
- [2] Devroye, L.P., On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates, Ann. Stat., 1981, Vol 9, 1310—1319.
- [3] Chen Xiru (陈希腊), Almost Sure Convergence of Nonparametric Regression Estimates, Chin. Ann. of Math., 6B(1), 1985, 103—108.
- [4] Zheng Zukang, A Class of Estimators for the Parameters in Linoar Regression with Censored Data, to appear.
- [5] Koul, H., Susarla, V. and Van Ryzin, J., Regression Analysis with Randomly Right-Censored Data, Ann. Stat., 1981, Vol 9, 1276—1288.
- [6] Tao Bo and Cheng Ping (陶波,成平) 个矩不等式, China 数学年刊, 1981, 451—461.
- [7] Kaplan, E. L. and Meier, P., Nonparametric Estimation from Incomplete Observations, JASA, 1958, (53) 457-481.