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|. Introduction and Main Results

A Meromorphic function F(z) is said to have a non-trivial factorization
with left factor f and right factor g, if
(1) F(z)= flg(z)),
where f is a non-linear meromorphic function and g is a non-linear entire
function (g may be meromorphic when f is rational ). F(z) is said to be
prime, if it has no non-trivial factorizations , i.e, if (1) implies that
either f or g is linear. F (z) is said to be pseudo-prime, if (1) implies
that one of f and g is not transcendental. Two factorizations F = f| (g,) and
F=f,(g,) are said to be equivalent, if there are linear transfomations 1,, 4,
and 4, such that

fr=Aiofied, and g;=1;'ogiely,

We shall consider two factorizations of a meromorphic function as the same
one if they are equivalent,

Ozawal?2) investigated the pseudo-primality of some classes of entire
functions as follows.

(A) F(z2)=P (2)e” >, where P(z) is a non-constant polynomial , and
H(z) is a non-constant entire function of order<1.

(B) F(z)=JF:P (z)e"“dz, where P and H are the same as in (A).

(C) F(@)=P(z) exp(e’) with a non-constant polynomial P (z).

(D) F(z)=j;P(z)e'xp(ez)dz with a non-constant polynomial P (z2).

We shall in this note pursue the sub ect of the investigation further to
discuss the primality of the above functions with the more general forms.
The main resulte are contained in the following theorems .

Theorem | Let F(z)=Q(2)e”“’. where Q and H satisfy one of the
following hypotheses .
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(1) Q(z)is a rational fupetion such that none of Q@ and —é— is a polyn-
omial , and H(z) is a non-constant entire function;

(O) Q (z) is a non-constant rational function, and H (z) is a non-cons-
tant entire function of order p(H)Y<1.

Then F(z) is prime, unless (i) Q (z)=8(z)", where fg(z) is rational,
and »n >2 is an integer; or (i) Q (z) and H(z) have a common rightfactor
a(z), i.e. there exist ¢q(¢), h({) and a(z) such that

Q (z)=¢q(a(z)) and H (z) = h(a(z)),
where ¢(¢) is rational, A(¢) is entire, and «¢(z) is a polynomial of degree>
2.

Remark In (5 ] the author has obtained the same result as theorem 1
for the function F(z)=Q(z)e” "’ with a polynomial H(z) (so that F is of
finite order). But when H(z) is transcendental , we have to use the differ--
ent method.

Theorem 2 Let F(z) be a meromorphic function satisfying F' (z)~=
Qz)e ", where Q (z)®#0 is a rational function, and H(z) is a transcenden-
tal entire function of order‘<1, Then F (z) is prime, unless there exist ra-
tional function ¢ ({), polynomial «(z) of degree>2, and entire function h(¢),
such that

Q(z)=a (2)q@(z)) and H(z)= h(a(z)).

Theorem 3 Let F(z)=Q(z)exp (¢?), where Q (z) is a non-constant rati-
onal function. Then F (z) is prime, unless Q(z) = A(z)" with a rational
function f(z) and n >2,

Theorem 4 Let F (z)be a meronorphic function satisfying F’'(z)=
Q (z)exp(e’) with a rational function Q(z). Then F (z) is prime.

2 . Proofs of Theorems

In proving our theorems we need some lemmas.
Lemma IU] Let a,(z)(j=0, 1, +»», n) be meromorphic functions of
order<p, and g;(z) (j=1, -, n) be entire functions and g,;(z)-g:(z) (jFk)
transcendental entire functions or polynomials of degree™>p. Then the identity

relation

n

Z a(z)efF=q4(z)

i=t
holds only when a,(z) =a,(z)=e=0qa, (z)=(.
Lemma 237 Let f and g be transcendental entire functions. {f f is
of positive order, then f(g) is of infinite order.

z

Lemma 3 All possible non-trivial rzactorizations for ¢° of the form e’ =
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fW(g)) are the following (in the sense of equivalency)
S =¢"(n]=22), g@=e”".

Proof of Theorem | We just prove this theorem under hypothesis (] );
the proof under (II) is quite similar. Now we discuss 3 cases.

a) F=f(g), where f({) is meromorphic, and g entire, both transcenden-
tal . Since F has only finitely many zeros and poles, we can see that g(z)
must have one finite Picard exceptional values, which may be assumed to be
¢ =0 (by a linear transformation, which doesn’t affect the factorization of
F (z) in the sense of equivalency), and f(¢) has its zero or pole only at ¢ =
0 and ¢ =oo. Thus

S f(&)=¢"e” and g@)=p@)e’ ),
where n #0 is an integer, p(z)Z0 is a polynomial, and ¢, ¢ are non-consta-
nt entire functions, We obtain
Q ()explH (2)} = p(z)"expinp(z)+ p(p(z)e’ “)}.
By lemma |, we deduce Q(z)=cp(z)", which implies that Q or 15is a poly-
nomial. Thus we get a contradiction.

b) F=R(g), where R ({) is a rational function of degree >2, and g

meromorphic, By the same reasoning as stated in case a), we may write
R =c¢", glz)=B,z)e",
where ¢ is a constant, »n is an integer with |n|>2, f,(z) is a mational func-
tion, and A(z) is a non-constant entire function, Therefore,
Qz)e = (z)e .
which implies Q(z)=8(z)" with a rational function f(z)=c,f, (z).
¢c) F=f(a), where f({) is meromorphic, and a(z) is a polynomial of de -
gree>2. Since f(¢) can only have finitely manv zeros and poles,
fEY=q, (e
where ¢, ({) is rational, and h,;(¢) entire, Hence,
Q ()explH(2)} = q, (a(z))explh, (a@)},
which implies Q (z)=g¢g(a(z)) and H(z)= h(a(z)), where q=c,q, and h=h,+c,
with constants ¢, and c,.
Proof of Theorem 2 Let F= f(g). Then
(2) F'(z)= f'(8@zNg’(2)=Q (z)e™ *’,

a) f is meromorphic, and g is entire, both transcendental. The discussion
in this case is quite similar to that of'Qzawa’s theorem in (23, which shou-
Id be omitted.

b)) f is rational of degree>2, and g meromorphic. From (2 ) we know
that g(z) has only finitely many poles, and it has exactly one Picard excep-
tional value, which may be assumed to be (=0, and f'() has its zeros
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or poles only at ¢=0 and ¢=oo. Thus, we have
(3) ff@)=cé", gz)=q@)e"®, ' (3)
where ¢ is a constant, n=+0, -1, g(z) is rational, and h(z) transcendental
entire., From (2 ) and (3) we deduce
4) cq (z)"(q’ @) +a(2)h' (z))exp{ (n+ 1 YA()} = Q(2)e ™ (4)
Since & (z) is obviously transcendental of order<1, (n+ 1)h(z)—- H(z) can
neither be transcendental (by lemma2) nor a non-constant polynomial (othe-
rwise h(z) would be of order1) nor a constant. Therefore, equality (4 ) is
untenable.

c¢) f is meromorphic, and g(z)=a(z) is a polynomial. Since f’'({) can
only  have finitely many zeros and poles, we have

1'(¢)=a, & rexplh, O}, |
where ¢,({) is rational, and h, ({) transcendental entire. Thus
g, (a(z)ya’ (z)exp{h, (@)} = Q (z)exp{H (z)}.

By lemma 1, we obtain Q(z)=g(a(z))a’ (z), H(z)=h(a(z)), where ¢~ c,q,,
h=h, +c, with constants ¢,, c,.

The proof of theorem 3 is quite similar to that of theorem I, which is omitt-

ed here.
Proof of Theorem 4 Let F=f()., Then
(5) F'(z)=f'(8z))eg'(2)=Q (z)expe”) (5)

a ) fis meromorphic, and g entire, both transcendental, By the same
argument as in the proof of theorem 1, we obtain
(6) f@)=¢4"e’©, g(2)=p@le’ ), (6)
where 7 -1 is an integer. ¢ and ¢ are non-constant entire (@ctually, p(z)
must be a \polynomial, as is easily seen), and p(z)#0 is a polynomial, From

(5 ) and (6 ) we deduce

expi (1+ DY) +o(p(z)e’ O)- &) = g%;tp%zﬁ PGEW(2)).

But this equality can not hold (by careful discussing, the details should be
omitted ). A
b) fis ranonal of degree>2, and ¢ meromorphic. In this case, we may
get
f¢r=cé", g(z)=q(z)" ®,
where n30, —1 is an integer, g(z)¥0 rational, and h(z) entire. It follows
that
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cq(z)"(q'(2)+ q K (zNexpin+ 1)h(z)} =Q (2)exple” ).
Obviously, h(z) is of order 1, so is 4’ (z). Hence, we deduce
e’ a
n+1 * n+l

(n+1)h@z)=e*+az+c,, h' @)= (a #+0)

Therefore, \

ch(z)ntqw(z)fiazl) t:z+ nzl 6’(z)]eaZ'J-tn:Q(z)

But this would derive ¢g(z)=Q(z)=0 by lemma 1, a contradiction.
c) fis meromorphic, and g is a polynomial of degree>2. Then
f@)=R )X and R@Ez)e (2)exple@z)} =Q (2)exp(e’),
where ¢ is entire, and R ({)F0 is rational, éy lemma 1, we would derive
(7) e’=p@@) e (7)
But (by lemma 3) e° can not have a factorization like the form (7).
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