Finite Element Method for a Class of Nonlinear Problems (II)——Applications*

Wang Ming (王 鸣)
(Dalian Conversity f Technology, China)

Continuing the work in [1], we apply the results in [1] to the finite element methods for the Navier-Stokes' equations and the von Karman equations, and show the convergence of some conforming elements, nonconforming elements and quasi-conforming elements, which are convergent in the cases of the linear problems.

1. Finite Element Spaces

Let Ω be a polyhedroid domain in \mathbb{R}^n . Denote β the multi-index with $|\beta| = \sum_{i=1}^n \beta_i$. For $m \ge 0$ and $1 \le \sigma \le \infty$, define $\mathbb{L}^{m,\sigma}(\Omega) = \{u = (u^\beta)_{|\beta| \le m} | u^\beta \in \mathbb{L}^{\sigma}(\Omega), \|\beta\| \le m\}$. For u in $\mathbb{L}^{m,\sigma}(\Omega)$, $\|u\|_{m,\sigma,\Omega} = \left(\sum_{|\beta| \le m} \|u^\beta\|_{\mathbb{L}^{\sigma}(\Omega)}^{\sigma}\right)^{\frac{1}{\sigma}}$ if $\sigma < \infty$, otherwise, denote $\|u\|_{m,\infty,\Omega} = \max_{\|\beta| \le m} \operatorname{ess\,sup} |u^\beta(x)|$. If w is an element in Sobolev space $\mathbb{W}^{m,\sigma}(\Omega)$, let it correspond to the element $\mathbb{C}^{\beta}(\Omega)$ in $\mathbb{C}^{m,\sigma}(\Omega)$, then $\mathbb{W}^{m,\sigma}(\Omega)$ is a closed subspace of $\mathbb{C}^{m,\sigma}(\Omega)$.

Let \mathcal{M} be a set consisting of some *n*-simplexes or *n*-parallelotopes. Let K_h , for $h\epsilon(0,1)$, be a finite subdivision of Ω . Assume that all the elements in K_h are in \mathcal{M} and K_h satisfy the usual assumptions (see $\lfloor 2-5 \rfloor$).

Finite Element Spaces $U_{1,h}$. For each K in \mathcal{K} , we give two linear operators of interpolation, say $\Pi_{K}^{0}:C^{1}(K)\to P(K)$, $\Pi_{\partial K}:C^{1}(K)\to L^{\infty}(\partial K)$, and n finite dimensional spaces $N_{K}^{e}\subset P(K),1\leq i\leq n$. Here P(K) consists of all polynomials on K and $e_{i}=(\delta_{1i},\cdots,\delta_{ni})$. Then define $\Pi_{K}^{e_{i}}:C^{1}(K)\to N_{K}^{e_{i}}$, $1\leq i\leq n$, as follows, for any v in $C^{1}(K)$, $\Pi_{K}^{e_{i}}v$ is determined by the following equations,

$$1 \leq i \leq n, \int_{K} p \Pi_{K}^{e_{i}} v \, \mathrm{d}x = \int_{\partial K} p \Pi_{\partial K} v N_{i} \, \mathrm{d}s - \int_{K} D_{K}^{e_{i}} p \Pi_{K}^{0} v \, \mathrm{d}x, \quad \forall p \in N_{K}^{e_{i}}, \qquad (1.1)$$

^{*} Received Oct. 15, 1985.

where $N = (N_1, \dots, N_n)^T$ is the unit outward normal of ∂K .

Define, for $h \in (0,1)$, $\Pi_h^1 : C^1(\overline{\Omega}) \to L^{1,\infty}(\Omega)$ by the way that for each u in $C^1(\overline{\Omega})$,

$$(\Pi_h^1 u)^{\beta} |_{K} = \Pi_K^{\beta}(u|_{K}), \quad K \in K_h, \quad |\beta| \leq 1.$$
 (1.2)

The finite element spaces $U_{1,h}$, $\mathring{U}_{1,h}$ are obtained by setting

$$\begin{cases}
U_{1,h} = \Pi_h^1 C^1(\overline{\Omega}), \\
\mathring{U}_{1,h} = \{ w \mid w = \Pi_h^1 u, u \in C^1(\overline{\Omega}) \text{ and } D^{\beta} u \mid_{\partial\Omega} = 0, |\beta| \leq 1 \},
\end{cases}$$
(1.3)

and they are used to approximate $W^{1,\sigma}(\Omega)$ and $W^{1,\sigma}(\Omega) = \{w \mid w \in W^{1,\sigma}(\Omega) \text{ and } w \mid_{\partial\Omega} = 0\}$.

Suppose there exists a group of linearly independent functionals on $C^1(K)$, say $\varphi_{1,K},\dots$, $\varphi_{M,K}$, and polynomials $G_{i,K}$ and $g_{i,K} \in L^{\infty}(\partial K)$, $1 \le i \le M$, such that, for any v in $C^1(K)$,

$$\Pi_{K}^{0}v = \sum_{i=1}^{M} \varphi_{i,K}(v) G_{i,K}, \Pi_{iK}v = \sum_{i=1}^{M} \varphi_{i,K}(v) g_{i,K}.$$
 (1.4)

and $\varphi_{i,K}(v) = 0$ with $1 \le i \le M$ when $\Pi_K^0 v = 0$ and $\Pi_{JK}v = 0$. call $\varphi_{i,K}$ the parameters of Π_K^0 , Π_{JK} .

For space N_K^{β} , $|\beta| = 1$, choose a basis of N_K^{β} , say $p_{j,K}^{\beta}$, $1 \le j \le V_{\beta}$. Denote the coordinate vector of $\Pi_K^{\beta}v$ with respect to this basis by $\zeta_{\beta,K}(v)$. Set $\zeta_K^1(v) = (\zeta_{e_1,K}^T(v), \dots, \zeta_{e_n,K}^T(v))^T$ and $\Phi_K^1(v) = (\varphi_{1,K}(v), \dots, \varphi_{M,K}(v))^T$, then equations (1.1) amounts to

$$A_{K}^{1}\zeta_{K}^{1}(v) = Q_{K}^{1}\Phi_{K}^{1}(v). \tag{1.5}$$

where $A_{\mathbf{K}}^{1}$ is symmetric positive definite matrix and $Q_{\mathbf{K}}^{1}$ is $(\sum_{i=1}^{n} L_{e_{i}}) \times M$ matrix.

Finite Element Spaces $U_{2,h}$. Now let n=2. For each K in \mathcal{J} , we give four linear operators Π_{K}^{0} : $C^{2}(K) \rightarrow P(K)$ and $\Pi_{\partial K}$, $\Pi_{\partial K}^{S}$, $\Pi_{\partial K}^{N}$: $C^{2}(K) \rightarrow L^{\infty}(\partial K)$ and five finite dimensional spaces N_{K}^{β} , $1 \leq |\beta| \leq 2$, consisting of polynomials. Then define Π_{K}^{β} : $C^{2}(K) \rightarrow N_{K}^{\beta}$, $0 \leq |\beta|$, as follows: for any v in $C^{2}(K)$, $\Pi_{K}^{\beta}v$ are determined by the following equations,

$$\begin{cases} i = 1, 2, \int_{K} p \prod_{K'}^{e} v dx = \int_{\partial K} p \prod_{\partial K'} v N_{i} ds - \int_{K} D^{e} p \prod_{K'}^{0} v dx, & \forall p \in N_{K'}^{e}, \\ \int_{K} p \prod_{K'}^{(2,0)} v dx = \int_{\partial K} p (N_{1}^{2} \prod_{\partial K}^{N} v - N_{1} N_{2} \prod_{\partial K'}^{S} v) ds - \int_{K} D^{e} p \prod_{K'}^{e} v dx, & \forall p \in N_{K'}^{(2,0)}, \\ \int_{K} 2 p \prod_{K'}^{(1,1)} v dx = \int_{\partial K} p (2N_{1} N_{2} \prod_{\partial K'}^{N} v + (N_{1}^{2} - N_{2}^{2}) \prod_{\partial K}^{S} v) ds - \int_{K} (D^{e}) p \prod_{K'}^{e} v + (D^{e}) p \prod_{K'}^{e} v dx, & \forall p \in N_{K'}^{(2,0)}, \end{cases}$$

$$+ \mathbf{D}^{e_2} p \Pi_k^{e_1} v) \mathrm{d}x, \ \forall \ p \in \mathbf{N}_K^{1,1}, \tag{1.6}$$

$$\int_{K} p \Pi_{K}^{0,2} v dx = \int_{\partial K} p \left(N_{2}^{2} \Pi_{\partial K}^{N} v + N_{1} N_{2} \Pi_{\partial K}^{s} v \right) ds - \int_{K} D_{K}^{e_{2}} p \Pi_{K}^{e_{2}} v dx, \ \forall \ p \in N_{K}^{(0,2)}.$$

Define, for
$$h\epsilon (0,1)$$
, $\Pi_h^2 : C^2(\overline{\Omega}) \to L^{2,\infty}(\Omega)$ as follows, $u\epsilon C^2(\overline{\Omega})$, $(\Pi_h^2 u)^{\beta}|_{K} = \Pi_K^{\beta}(u|_{K})$, $|\beta| \leq 2$, $K\epsilon K_h$. (1.7)

Then finite element spaces $U_{2,h}$ and $\mathring{U}_{2,h}$, which are used to approximate $W^{2,\sigma}(\Omega)$ and $\mathring{W}^{2,\sigma}(\Omega)$, are obtained by setting,

$$\begin{cases}
\mathbf{U}_{2,h} = \Pi_{h}^{2} \mathbf{C}^{2}(\overline{\Omega}), \\
\dot{\mathbf{U}}_{2,h} = \{w \mid w = \Pi_{h}^{2} u, u \in \mathbf{C}^{2}(\overline{\Omega}) \text{ with } \mathbf{D}^{\beta} u \mid_{\partial \Omega} = 0 \text{ for all } |\beta| \leq 2\}.
\end{cases}$$
(1.8)

Suppose there exists a group of linearly independent functionals $\varphi_{1,K}, \dots$, $\varphi_{M,K}$ on $C^2(K)$, and $G_{j,K}P(K)$ and $g_{j,K}, g_{j,K}^s, g_{j,K}^N \in L^\infty(\partial K)$, $1 \le j \le M$, such that, for any v in $C^2(K)$,

$$\begin{cases}
\Pi_{K}^{0}v = \sum_{j=1}^{M} \varphi_{j,K}(v)G_{j,K}, & \Pi_{\partial K}v = \sum_{j=1}^{M} \varphi_{j,K}(v)g_{j,K}, \\
\Pi_{\partial K}^{s}v = \sum_{j=1}^{M} \varphi_{j,K}(v)g_{j,K}^{s}, & \Pi_{\partial K}^{N}v = \sum_{j=1}^{M} \varphi_{j,K}(v)g_{j,K}^{N,s},
\end{cases} (1.9)$$

and $\varphi_{j,K}(v) = 0$ for $j = 1, \dots, M$, when $\Pi_{K}^{0}v = 0$ and $\Pi_{jK}v = \Pi_{jK}^{N}v = \Pi_{jK}^{N}v = 0$. $\varphi_{j,K}$ are called the parameters of Π_{K}^{0} , Π_{jK}^{1} , Π_{jK}^{1} , and Π_{jK}^{N} .

For space N_K^{β} , $0 < |\beta| \le 2$, we choose a basis of N_K^{β} , say $p_{j,K}^{\beta}$, $1 \le j \le L_{\beta}$. Denote the coordinate vector of $\Pi_{K^0}^{\beta}$ with respect to this basis by $\zeta_{\beta,K}(v)$. Set $\zeta_K^2(v) = (\zeta_{(2,0),K}^{T}(v), \zeta_{(1,1),K}^{T}(v), \zeta_{(0,2),K}^{T}(v))^T$ and $\Phi_K^2(v) = (\varphi_{1,K}(v), \cdots, \varphi_{M,K}(v))^T$. Then the last three equations of (1.6) amount to $A_K^2 \zeta_K^2(v) = Q_K^2 \Phi_K^2(v), \qquad (1.10)$

where $A_{\rm K}^2$ is a symmetric positive definite matrix and $Q_{\rm K}^2$ is $\left(\sum_{|\beta|=2}L_{\beta}\right)\times M$ matrix.

Finnally, we must point out that the conforming element spaces, nonconforming element spaces and quasi-conforming element spaces are special cases of $U_{1,\,h}$ and $U_{2,\,h}(\sec{(2)})$.

2. Some Properties of Finite Element Spaces

First, we give some definitions. Choose a fixed *n*-simplex (or *n* parallelo tope) \widehat{K} . Then for each *n*-simplex (or *n*-parallelotope) K, there exists an affine transformation, $F_{K}\widehat{x} = B_{K}\widehat{x} + b_{K}$, such that $K = F_{K}\widehat{K}$, with B_{K} is an $n \times n$

nonsingular matrix and b_K a vector in R^n .

We define, for every function w defined on K (or on ∂K),

$$\widehat{w}(\widehat{x}) = w(F_{\mathbf{K}}\widehat{x}), \quad \widehat{\forall x \in \mathbf{K}} \quad (\text{or } \widehat{\partial \mathbf{K}}).$$
 (2.1)

And for the linear functional φ on C'(K), we define a linear functional $\widehat{\varphi}$ on $C'(\widehat{K})$, such that,

$$\widehat{\varphi}(\widehat{w}) = \varphi(w), \quad \forall \widehat{w} \in \mathbb{C}^r(\widehat{K}).$$
 (2.2)

where w and \widehat{w} satisfy (2.1).

 $\{\Pi_{K}^{0},\Pi_{\partial K},N_{K}^{\beta}\}\$ is called a properly affine continuous family, if i) for a sequence of n-simplexes or n-parallelotopes $\{K_{t}\}_{t=0}^{\infty}$, if $K_{t}\in\mathcal{K}$, $t\in\mathbb{N}$, and $B_{K_{t}}$ converges to $B_{K_{0}}$, then $K_{0}\in\mathcal{K}$, and for $1\leq j\leq M$, $\widehat{\varphi}_{j,K_{t}}\to\widehat{\varphi}_{j,K_{0}}$ in the dual space of $C^{1}(\widehat{K})$, $\widehat{G_{j,K_{t}}}$ converges to $\widehat{G_{j}}$, K_{0} uniformly and $\widehat{g_{j,K_{t}}}$ converges to $\widehat{g_{j,K_{t}}}$ in $L^{\infty}(\widehat{\partial K})$, and for $0<|\beta|\leq 1$, $1\leq i\leq L_{\beta}$, $\widehat{p_{i,K_{t}}}$ converges to $\widehat{p_{i,K_{t}}}$ uniformly; and ii) for each $K\in\mathcal{K}$ and constant C>0, denote $\widetilde{K}=\{\widetilde{x}\mid\widetilde{x}=Cx,\forall x\in K\}$, and for function w defined on K or ∂K , define $\widetilde{w}(\widetilde{x})=w(C^{-1}\widetilde{x})$, $\widetilde{x}\in\widetilde{K}$ or $\partial\widetilde{K}$, then $\widetilde{K}\in\mathcal{K}$, and $\widetilde{\Pi_{KW}^{0}}=\Pi_{\widetilde{K}}^{0}\widetilde{w}$ and $\widetilde{\Pi_{dK}^{0}}w=\Pi_{d\widetilde{K}}^{0}\widetilde{w}$ for $w\in C^{1}(K)$, and for $0<|\beta|\leq 1$, $p_{i,K}^{\beta}$, $1\leq i\leq L_{\beta}$, is a basis of N_{K}^{β} .

The properly affine continuous family is the generalization of the affine family $^{(6)}$. The operators Π_K^0 , $\Pi_{\partial K}$ actually used all satisfy the conditions of the properly affine continuous family (see [3]). And the simplest case of N_K^{β} satisfying the conditions i) and ii) is that $N_K^{\beta} = \{p \mid p(x) = \widehat{p}(F_K^{-1}x), \forall \widehat{p} \in N_{\partial}^{\beta}\}$.

 $\{\Pi_K^0,\Pi_{\partial K},N_K^\beta\}$ is strongly continuous if for $K\in\mathcal{M}$ and every (n-1)-dimensional surface F of K, $\Pi_{\partial K}w|_{F}\in C(F)$ when $w\in C^1(K)$, and there exists a line-ear continuous functional q_F on C(F) such that, i) $\{q_F\}$ is an affine family, i.e., for $w\in C(F)$, $q_F(w)=q_F^2(\widehat{w})$ when $F=F_K\widehat{F}$, ii) $q_F^2(1)\neq 0$, and iii) if F is an (n-1)-dimensional common surface of K' and N'', then $q_F(\Pi_{\partial K'}w|_F)=q_F(\Pi_{\partial K'}w|_F)$ when $w\in C^1(K'\cup K'')$.

The definitions of the properly affine continuous family and the strong continuity for $\{\Pi_K^0, \Pi_{\partial K}, \Pi_{\partial K}^s, \Pi_{\partial K}^N, N_K^\beta\}$ can be given in a similar way. For the details see [3]. From [3] we know that $\{\Pi_K^0, \Pi_{\partial K}, N_K^\beta\}$ and $\{\Pi_K^0, \Pi_{\partial K}^s, \Pi_{\partial K}^\beta\}$ actually used are all strongly continuous.

 $\{\Pi_K^0,\Pi_{\partial K},N_K^\beta\}$ passes the IPT test, if for $K\in \mathcal{K}$ there exists another polynomial interpolation operator $\widetilde{\Pi}_{\partial K}:C^1(K)\to L^\infty(\partial K)$ with the properties: i) $\{\Pi_K^0,\widetilde{\Pi}_{\partial K},N_K^\beta\}$ is a properly affine continuous family and the parameters of $\Pi_K^0,\widetilde{\Pi}_{\partial K}$ are the linear combinations of those of $\Pi_K^0,\Pi_{\partial K}$ ii) $\widetilde{\Pi}_{\partial K}^{\rho}=\rho|_{\partial K}$ for

 $p \in P_0(K)$; iii) if K and K' $\in_{\mathscr{K}}$ and $F = K \cap K'$ is (n-1) dimensional, then $\int_F \widetilde{\Pi}_{\partial K} w ds = \int_F \widetilde{\Pi}_{\partial K'} w ds \text{ for } \forall w \in C^1(K \cup K'); \text{ and iv }) \text{ for } \forall w \in C^1(K) \text{ and } K \in_{\mathscr{K}},$ $\int_{\partial K} N_i (\Pi_{\partial K} - \widetilde{\Pi}_{\partial K}) w ds = 0, \quad 1 \leq i \leq n. \text{ Where } P_i(K) \text{ is the space consisting of all polynomials with degree not greater than } t.$

Similarly, $\{\Pi_{K}^{0}, \Pi_{\partial K}, \Pi_{\partial K}^{s}, \Pi_{\partial K}^{N}, N_{K}^{\beta}\}$ passes the IPT test, if for $K \in \mathcal{M}$, there exist another two linear operators $\widetilde{\Pi}_{\partial K}^{s}, \widetilde{\Pi}_{\partial K}^{N}, C^{2}(K) \rightarrow L^{\infty}(\partial K)$ with the properties: i) $\{\Pi_{K}^{0}, \Pi_{\partial K}, \widetilde{\Pi}_{\partial K}^{s}, \widetilde{\Pi}_{\partial K}^{N}, N_{K}^{\beta}\}$ is a properly affine continuous family and the parameters of $\Pi_{K}^{0}, \Pi_{\partial K}, \widetilde{\Pi}_{\partial K}^{s}, \widetilde{\Pi}_{\partial K}^{N}$ are the linear combinations of those of $\Pi_{K}^{0}, \Pi_{\partial K}, \Pi_{\partial K}^{s}, \widetilde{\Pi}_{\partial K}^{s}, \widetilde{\Pi}_{\partial K}^{N}$ and $\widetilde{\Pi}_{\partial K}^{N} p = \frac{\partial p}{\partial N}|_{\partial K}$ for $p \in P_{1}(K)$; iii) if K and $K' \in \mathcal{M}$ and $K' \in \mathcal$

$$\int_{\partial K} \left[\begin{array}{c} N_1^2 \left(\Pi_{\partial K}^N - \widetilde{\Pi}_{\partial K}^N \right) w - N_1 N_2 \left(\Pi_{\partial K}^s - \widetilde{\Pi}_{\partial K}^s \right) w \\ 2 \, N_1 N_2 \left(\Pi_{\partial K}^N - \widetilde{\Pi}_{\partial K}^N \right) w + \left(N_1^2 - N_2^2 \right) \left(\Pi_{\partial K}^s - \widetilde{\Pi}_{\partial K}^s \right) w \\ N_2^2 \left(\Pi_{\partial N}^N - \widetilde{\Pi}_{\partial K}^N \right) w + N_1 N_2 \left(\Pi_{\partial K}^s - \widetilde{\Pi}_{\partial K}^s \right) w \end{array} \right] \mathrm{d}s = 0 \; .$$

 $\{\Pi_K^0, \Pi_{JK}, N_K^\beta\}$ satisfies the rank condition of element if the rank of matrix Q_K^1 is M-1 for $\forall K \in \mathcal{M}$. $\{\Pi_K^0, \Pi_{JK}, \Pi_{JK}^{J}, \Pi_{JK}^N, N_K^\beta\}$ satisfies the rank condition of element if the rank of matrix Q_K^2 is M-3 for $\forall K \in \mathcal{M}$.

By the way used in (3,4), we can get some properties of $U_{1,h}$ and $U_{2,h}$. We list them without proof.

Theorem | Let $1 < \sigma < \infty$ and the following (H1) and (H2) be true: (H1). $\{\Pi_K^0, \Pi_{\partial K}, N_K^{\theta}\}$ is a properly affine continuous family, satisfies the rank condition of element, has the strong continuity and passes the IPT test. (H2). There exist two integers r_1 and r_2 such that, $r_i \ge 1$ for $i = 1, 2, \Pi_K^0$ can be extended to a bounded linear operator from $W^{r_i+1,\sigma}(K)$ to $W^{1,\infty}(K)$ and $\Pi_{\partial K}$ to a bounded linear operator from $W^{r_2+1,\sigma}(K)$ to $L^{\infty}(\partial K)$, and $\Pi_K^0 p = p$ for $p \in P_{r_1}(K)$, $\Pi_{\partial K} p = p|_{\partial K}$ for $p \in P_{r_2}(K)$; and for $i = 1, \dots, n$, $P_0(K) \subseteq N_K^{e_i}$. Then then following conclusions are true: I) if $\mu \ge \sigma$ and $\mu \le n\sigma/(n-\sigma)$ when $n > \sigma$, $\mu < \infty$ when $n = \sigma$ and $\mu \le \infty$ when $n < \sigma$, then there is a constant C independent of h, such that,

$$u_h \in U_{1, h}, \|u_h^0\|_{L^{\mu}(\Omega)} \le C \|u_h\|_{1, \sigma, \Omega},$$
 (2.3)

is true for h sufficiently small; (\parallel) if $\mu \ge \sigma$ and $\mu < n\sigma/(n-\sigma)$ when $n > \sigma$,

 $\mu < \infty$ when $n = \sigma$ and $\mu \le \infty$ when $n < \sigma$, then for $\forall u$ in $\mathbf{W}^{1,\sigma}(\Omega)$, $\lim_{h \to 0} \inf_{v \in \mathbf{U}_{1,h}} \{\|u - v^0\|_{\mathbf{L}^{\mu}(\Omega)} + \|u - v\|_{1,\sigma,\Omega}\} = 0$, and for $\forall u$ in $\mathbf{W}^{1,\sigma}(\Omega)$, $\lim_{h \to 0} \inf_{v \in \mathbf{U}_{1,h}} \{\|u - v^0\|_{\mathbf{L}^{\mu}(\Omega)}\}$ $+ \|u - v\|_{1,\sigma,\Omega}\} = 0$; $\|\|$ let μ satisfy the requirement in $\|\|$), then for each bounded sequence $\{u_m\}$ of $\mathbf{L}^{1,\sigma}(\Omega)$ with $u_m \in \mathbf{U}_{1,h_m}$ for $m \in \mathbf{N}$ and $h_m \to 0$ as $m \to \infty$, there exists a subsequence \mathbf{N}' of \mathbf{N} and u_0 in $\mathbf{W}^{1,\sigma}(\Omega)$, such that, $\{u_m\}_{m \in \mathbf{N}'}$ weakly converges, in $\mathbf{L}^{1,\sigma}(\Omega)$ sense, to u_0 and $\lim_{m \in \mathbf{N}', m \to \infty} \|u_0 - u_m^0\|_{\mathbf{L}^{\mu}(\Omega)} = 0$; if $u_0 \to 0$ and $u_0 \to 0$ respectively, the conclusion is also true; $\|\mathbf{V}\|$ there is a constant C independent of h, such that,

$$u_h \in \overset{\circ}{\mathrm{U}}_{1,h}, \|u_h\|_{1,\sigma,\Omega} \leq C \sum_{\|\beta\|=1} \|u_h^{\beta}\|_{\mathrm{L}^{\sigma}(\Omega)}$$
 (2.4)

hold for h sufficiently small.

Theorem 2 Let $1 < \sigma < \infty$ and the following (H3) and (H4) hold: (H3). There exist integers $r_i \ge 2(1 \le i \le 4)$, such that, Π_K^0 can be extended to a bounded linear operator from $W^{r_1+1,\sigma}(K)$ to $W^{2,\omega}(K)$, and $\Pi_{\sigma K}, \Pi_{\sigma K}^s$ and $\Pi_{\sigma K}^N$ to bounded linear operators from $W^{r_2-1,\sigma}(K), W^{r_3-1,\sigma}(K)$ and $W^{r_4-1,\sigma}(K)$ to $U(\sigma K)$ respectively, and $\Pi_K^0 = p$ for $p \in P_{r_1}(K), \Pi_{\sigma K} = p \mid_{\sigma K} for p \in P_{r_2}(K), \Pi_{\sigma K}^s = \frac{\partial p}{\partial S} \mid_{\sigma K} for p \in P_{r_3}(K)$ and $\Pi_K^0 = \frac{\partial p}{\partial S} \mid_{\sigma K} for p \in P_{r_4}(K)$; and for $0 < |\beta| \le 2$, $P_{2-|\beta|}(K) \subset N_K^0$

(H4). $\{\Pi_{\mathbf{K}}^0, \Pi_{\partial \mathbf{K}}, \Pi_{\partial \mathbf{K}}^s, \Pi_{\partial \mathbf{K}}^N, \mathbf{N}_{\mathbf{K}}^\beta\}$ is a properly affine continuous family, satisfies the rank condition of element, has the strong continuity and passes the IPT test. Then the following conclusions are true: I) if for $j=0, 1, \mu_j \geq \sigma$ and $\mu_j \leq 2\sigma/(2-2\sigma+j\sigma)$ when $2 > (2-j)\sigma$, $\mu_j < \infty$ when $2 = (2-j)\sigma$ and $\mu_j \leq \infty$ when $2 < (2-j)\sigma$, then there exists a constant C independent of h, such that,

$$u_h \in U_{2,h}, \sum_{j=0,1,\dots,\beta+1} \sum_{|\beta|=j} \|u_h^{\beta}\|_{L^{\mu_j}(\Omega)} \le C \|u_h\|_{2,\sigma,\Omega}$$
 (2.5)

hold for h sufficiently small; []) if for $j=0, 1, \mu_j \ge \sigma$ and $\mu_j < 2\sigma/(2-2\sigma+j\sigma)$ when $2 > (2-j)\sigma$, $\mu_j < \infty$ when $2 = (2-j)\sigma$ and $\mu_j \le \infty$ when $2 < (2-j)\sigma$, then for $\forall u \in W^{2,\sigma}(\Omega)$,

$$\lim_{h\to 0} \inf_{v\in U_{2,h}} \{ \|u-v\|_{2,\sigma,\Omega} + \sum_{j=0,1} \sum_{|\beta|=j} \|\mathbf{D}^{\beta}u-v^{\beta}\|_{L^{\mu_{j}}(\Omega)} \} = 0 ;$$

if $u \in \mathring{\mathbf{W}}^{2,\sigma}(\Omega)$, the $U_{2,h}$ in above equality can be replaced by $\mathring{\mathbf{U}}_{2,h}$; \square) let μ_0 , μ_1 satisfy the assumption in \square), then for every bounded sequence $\{u_m\}$ in $L^{2,\sigma}(\Omega)$ with $u_m \in U_{2,h_m}$ for $m \in \mathbb{N}$ and $h_m \to 0$ as $m \to \infty$, there is a subsequence \mathbb{N}' of \mathbb{N} and u_0 in $\mathbb{W}^{2,\sigma}(\Omega)$, such that $\{u_m\}_{m \in \mathbb{N}'}$ weakly converges, in $L^{2,\sigma}(\Omega)$ sense, to u_0 and

$$\lim_{n\to\infty, m\in\mathbb{N}} \sum_{j=0,1} \sum_{|\beta|=j} \|\mathbf{D}^{\beta}u_0 - u_m^{\beta}\|_{\mathbf{L}^{\mu}/(\Omega)} = 0$$

 $\lim_{m\to\infty,\ m\in\mathbb{N}} \sum_{j=[p,1]} \sum_{|\beta|=j} \|\mathbf{D}^{\beta} u_0 - u_m^{\beta}\|_{L^{\mu_j}(\Omega)} = 0;$ if $U_{2,h}$ and $\mathbf{W}^{2,\sigma}(\Omega)$ are replaced by $\overset{\circ}{\mathbf{U}}_{2,h}$ and $\overset{\circ}{\mathbf{W}}^{2,\sigma}(\Omega)$ respectively, the conclusion is also true; \mathbb{N}) there is a constant C independent of h, such that,

$$u_{h} \in \overset{\circ}{U}_{2, h}, \|u_{h}\|_{2, \sigma, \Omega} \leq C \sum_{|\beta|=2} \|u^{\beta}\|_{L^{\sigma}(\Omega)}, \qquad (2.6)$$

hold for h sufficiently small.

It can be shown that the spaces U_{1, h}, constructed by well-known conforming elemints, Wilson's element and the element of Crouzeit-Raviart, satisfy (H1) and (H2)(see [8]), and that the spaces $U_{2,h}$, constructed by the element of Fraeijs de Veubake [8], Morley's element and 9-parameter, 12-parameter and 15-parameter quasi-conforming elements, satisfy (H3) and (H4)(see [8] and [2,3]).

3. Navier-Stokes Equations

This section is devoted to the finite element method for n-dimensional stationary Navier-Stoke's equations with $n \le 3$. Let $f \in (L^2(\Omega))^n$ and $\lambda > 0$ be Reynolds number, the problem is finding $(u, p) \in (\overset{\circ}{W}^{1, 2}(\Omega))^n \times L^2(\Omega)$, such that.

$$-\lambda^{-1} \triangle u + (u \cdot \nabla) u + \nabla p = f, \quad \nabla \cdot u = 0 \text{ in } \Omega.$$
 (3.1)

Set
$$X = (L^{1,2}(\Omega))^n$$
, $U_0 = (\mathring{W}^{1,2}(\Omega))^n$, $U_h = (\mathring{U}_{1,h})^n$, denote $X = \{v \mid v = \sum_{i=1}^L$

 $c_i v_i, v_i \in \bigcup_{k \in \mathbb{N}} U_k, c_i \in \mathbb{R}, L \in \mathbb{N}$. Define $A: X \to X, G: \widetilde{X} \to X$ as follows,

$$(Au,v) = \sum_{i,j=1}^{n} \int_{\Omega} u_i^{e_j} v_i^{e_j} dx, \quad \forall u, v \in X,$$
(3.2)

$$(Gu,v) = -\sum_{i,j=1}^{n} \int_{\Omega}^{i} u_{i}^{0} u_{j}^{0} v_{i}^{e_{j}} dx - \sum_{i=1}^{n} \int_{\Omega} f_{i} v_{i}^{0} dx, \quad \forall u \in \widetilde{\mathbf{X}}, v \in \mathbf{X},$$
 (3.3)

where (\cdot, \cdot) is the product of X. For $v \in X$ and $p \in L^2(\Omega)$, set

$$b(p,v) = \sum_{i=1}^{n} \int_{\Omega} p v_i^{e_i} dx.$$
 (3.4)

Let $L_0^2(\Omega) = \{ p \mid p \in L^2(\Omega), \int_{\Omega} p dx = 0 \}$. Consider the problem:

$$(u, p) \in U_0 \times L_0^2(\Omega), \quad (Au, v) + \lambda ((Gu, v) - b(p, v) - b(q, u)) = 0,$$

$$\forall (v, q) \in U_0 \times L_0^2(\Omega), \quad (3.5)$$

It is well known that the solution of (3.1) is the solution of (3.5), and equation (3.5) always has a solution for $\lambda > 0$.

For $h_{\epsilon}(0, 1)$, choose a finite dimensional subspace W_h of $L_0^2(\Omega)$. The finite element method for problem (3.5) is solving the following problem:

$$(u_h, p_h) \in U_h \times W_h, \quad (Au_h, v_h) + \lambda ((Gu_h, v_h) - b(p_h, v_h) - b(q_h, u_h)) = 0,$$

$$\forall (v_h, q_h) \in U_h \times W_h.$$
(3.6)

Denote $X_0 = \{v \mid v \in U_0, b(q, v) = 0, \forall q \in L^2(\Omega)\}, X_h = \{v \mid v \in U_h, b(q_h, v) = 0, \forall q_h \in W_h\}.$ Then equations (3.5) and (3.6) are equivalent to the following (3.7) and (3.8) respectively,

$$\begin{cases} u \in X_{0}, & (Au_{0}, v) + \lambda(Gu, v) = 0, \quad \forall v \in X_{0}, \\ p \in L_{0}^{2}(\Omega), & b(p, v) = \lambda^{-1}(Au, v) + (Gu, v), \quad \forall v \in U_{0}, \end{cases}$$

$$\begin{cases} u_{h} \in X_{h}, & (Au_{h}, \dot{v}_{h}) + \lambda(Gu_{h}, v_{h}) = 0, \quad \forall v_{h} \in X_{h}, \\ p_{h} \in W_{h}, & b(p_{h}, v_{h}) = \lambda^{-1}(Au_{h}, v_{h}) + (Gu_{h}, v_{h}), \quad \forall v_{h} \in U_{h}. \end{cases}$$
(3.8)

$$\begin{cases} u_{h} \in X_{h}, & (Au_{h}, \dot{v}_{h}) + \lambda (Gu_{h}, v_{h}) = 0, \quad \forall v_{h} \in X_{h}, \\ p_{h} \in W_{h}, & b(p_{h}, v_{h}) = \lambda^{-1} (Au_{h}, v_{h}) + (Gu_{h}, v_{h}), \quad \forall v_{h} \in U_{h}. \end{cases}$$
(3.8)

Lemma 1 Let (H1) and (H2) hold for $\sigma = 2$. Then there exists $h_0 \in (0, 1)$, such that, i) $G: \widetilde{X} \to X$ is infinitely Gateaux differentiable, $d'G \in L_{\infty}(X, X)$, $1 \le 1$ $r < \infty$, and for h, h' in $(0, h_0)$, $T_hG: X_{h'} \to X$ is infinitely Frechet differentiable; ii) the set $\{\|T_h d^r G(v)\|_{L_{\infty}(X_h, X)} | v \in X_{h'} \cap B, h, h' \in (0, h_0), 0 \le r < \infty \}$ is bounded when B is a bounded set in X; iii) if $v_m \in X_h$, $m \in \mathbb{N}$, and v_m converges to v_0 and $h_m \to 0$, then for $0 \le r < \infty$, $\lim \|T_{h_m}(d'G(v_m) - d'G(v_0))\|_{L_r(X_h, X)}$ = 0; iv) if $v_m \in X_{h_m}$, $m \in N$, and v_m weakly converges to 0 and $k_m \to 0$, then for $\forall u \in X_0$, $\lim (dG(u)v_m, v_m) = 0$; v) A is uniformly U_h -elliptic.

It is not difficult to show lemma 1 by theorem 1 and Sobolev's embeding theorem.

Lemma 2 Let (H1) and (H2) hold with $\sigma = 2$. Suppose that there is a constant C independent of h, such that, for $h \in (0, h_0)$,

$$\inf_{q_h \in W_h} \sup_{v_h \in U_h} |b(q_h, v_h)| / (||v_h|| ||q_h||_{L^2(\Omega)}) \ge C > 0,$$
(3.9)

$$q \in L_0^2(\Omega)$$
, $\lim_{h \to 0} \inf_{q_h \in W_h} \|q - q_h\|_{L^2(\Omega)} = 0$. (3.10)

Then i) for u_h satisfying the first equation of (3.8), the second one of (3.8) has a unique solution p_h ; ii) $\{X_h\}$, X_0 has the approximability and the weak closeness.

Proof Conclusion i) is obvious when (3.9) is true. If $v_m \in X_h$ for $m \in N$. and v_m weakly converges to v_0 and $h_m \rightarrow 0$, theorem 1 tells us $v_0 \in U_0$. For $\forall q \in V_0$ $L_0^2(\Omega)$, there exist $q_m f W_h$ such that $\lim \|q - q_m\|_{L^2(\Omega)} = 0$. Thus $b(q, \nu_0) = 0$ lim $b(q_m, v_m) = 0$, that is, $v_0 \in X_0$. The weak closeness is true.

If $u_0 \in X_0$, let u_h be the solution of the equations:

$$(u_h, p_h) \in \mathbf{U}_h \times \mathbf{W}_h, (Au_h, v_h) - b(p_h, v_h) - b(q_h, u_h) = (Au_0, v_h), \quad \forall (v_h, q_h) \in \mathbf{U}_h \times \mathbf{W}_h,$$

then $u_h \in X_h$ and $\lim ||u_0 - u_h|| = 0$ by theorem 1, (3.9) and (3.10) and Brezzi's theorem. The approximability is true.

Now we can apply the results in (1) to prove the convergence of the solutions of equation (3.6).

Theorem 3 Let (H1) and (H2) hold for $\sigma = 2$, and (3.9) and (3.10) be true. Then i) if Λ is a bounded closed interval and $\{(\lambda, u(\lambda)) | \lambda \in \Lambda\}$ is a branch of nonsingular solutions of the first equation of (3.7), then there exists, for h sufficiently small, a unique branch of solutions $\{(u_h(\lambda), p_h(\lambda)) | \lambda \in \Lambda\}$ of equation (3.6), such that, for $i \ge 0$,

$$\lim_{h\to 0} \sup_{\lambda\in\Lambda} \left\{ \|\mathbf{d}^{I}(u(\lambda) - u_{h}(\lambda))\| + \|\mathbf{d}^{I}(p(\lambda) - p_{h}(\lambda))\|_{L^{2}(\Omega)} \right\} = 0,$$

where $(u(\lambda),p(\lambda))$ is a solution of (3.5) for $\lambda \in \Lambda$; ii) if $(\lambda_0,u_0) \in \mathbb{R} \times X_0$ is a limit point of the first equation of (3.7), then there is $a_0 > 0$ and a branch of solutions $\{(\lambda(a),u(a),p(a)) \mid |a| \leq a_0\}$ of equation (3.5) with $(\lambda(0),u(0)) = (\lambda_0,u_0)$, and for h sufficiently small, equation (3.6) has a unique branch of solutions $\{(\lambda_h(a),u_h(a),p_h(a)) \mid |a| \leq a_0\}$, such that, for $i \geq 0$,

$$\lim_{x \to 0} \sup_{\|a\| \le a_0} \left\{ \| \mathbf{d}^T (\lambda(a) - \lambda_h(a)) \| + \| \mathbf{d}^T (u(a) - u_h(a)) \| + \| \mathbf{d}^T (p(a) - p_h(a)) \|_{1} :_{\Omega} \right\} = 0.$$

It can be verified that the conforming elements and nonconforming elements, discussed in [11] for the Stokes problems, satisfy the condition of theorem 3. And it is valid to use them to solve equation (3.5).

4. Navier-Stokes Equations in the Stream Function Formulation

The finite element method for equation (3.5) requires the condition (3.9), and it is very difficult to verify it. In the case of n=2, we can introduce the stream function and get a equation of 4th order,

$$\begin{cases}
\lambda^{-1} \Delta^{2} \varphi + \frac{\partial}{\partial x_{1}} (\varphi \frac{\partial}{\partial x_{2}} \Delta \varphi) - \frac{\partial}{\partial x_{2}} (\varphi \frac{\partial}{\partial x_{1}} \Delta \varphi) = f, & \text{in } \Omega \\
\varphi |_{\partial \Omega} = \frac{\partial \varphi}{\partial N} |_{\partial \Omega} = 0,
\end{cases} (4.1)$$

where $f \in L^2(\Omega)$ and p disappears.

Let
$$X = L^{2, 2}(\Omega)$$
, $X_0 = \mathring{W}^{2, 2}(\Omega)$, $X_h = \mathring{U}_{2, h}$, $h \in (0, 1)$, Set $\widetilde{X} = \{ \psi | \psi = \sum_{i=1}^{L} c_i \psi_i \}$,

 $c_i \in \mathbb{R}$, LeN, $\psi_i \in \bigcup_{h \in (0,1)} X_h$. Define $A: X \to X$, $G: \mathbb{R} \times \widetilde{X} \to X$ as follows,

$$-435$$

$$+ \varphi^{(1,0)} \varphi^{(0,1)} (\psi^{(0,2)} - \psi^{(2,0)}) - f \psi^{(0,0)} dx, \quad \forall \varphi \in \widehat{X}, \psi \in X, \tag{4.3}$$

The weak form of problem (4.1) is

$$\varphi \in \mathbf{X}_0, \quad (A\varphi, \psi) + (G(\lambda, \varphi), \psi) = 0, \quad \forall \psi \in \mathbf{X}_0. \tag{4.4}$$

For $\lambda > 0$, (4.4) has at least one solution. The finite element approximation of problem (4.4) is the following problem.

$$\varphi_h \in X_h, \quad (A\varphi_h, \psi_h) + (G(\lambda, \varphi_h), \psi_h) = 0, \quad \forall \psi_h \in X_h. \tag{4.5}$$

By the way used in the above section and theorem 2, we can prove the following results.

Theorem 4 Let (H3) and (H4) hold for $\sigma = 2$. Then i) if Λ is a bounded closed interval and $\{(\lambda, \varphi(\lambda)) | \lambda \in \Lambda\}$ is a branch of nonsingular solutions of equation (4.4), then there exists, for h sufficiently small, a unique branch of solutions $\{(\lambda, \varphi_h(\lambda)) | \lambda \in \Lambda\}$ of equation (4.5), such that, for $i \ge 0$, $\limsup_{h \to 0} \|d^i(\varphi(\lambda) - \varphi_h(\lambda))\| = 0$; ii) if (λ_0, φ_0) is a limit point of equation

(4.4), then there exist $a_0 > 0$ and a branch of solutions $\{(\lambda(a), \varphi(a)) \mid |a| \le a_0\}$ of equation (4.4) with $(\lambda(0), \varphi(0)) = (\lambda_0, \varphi_0)$, and equation (4.5) has, for h sufficiently small, a unique branch of solutions $\{(\lambda_h(a), \varphi_h(a)) \mid |a| \le a_0\}$ such that $\lim_{h \to 0} \sup_{|a| \le a_0} \{|d^i(\lambda(a) - \lambda_h(a))| + ||d^i(\varphi(a) - \varphi_h(a))|\} = 0$ for $i \ge 0$.

From the above theorem, we can conclude that the well-known conforming elements, the nonconforming elements, such as Adini's element and Morley's element etc., and 9-parameter, 12-parameter and 15-parameter quasi-conforming elements are convergent for equation (4.4) in the cases of nonsingular and limit points.

5. The von Karman Equations

In this section, set n=2 and consider the finite element method for the von Karman equation,

$$\begin{cases}
\triangle^{2} \varphi_{1} = -(\varphi_{2}, \varphi_{2})/2, & \text{in} \Omega \\
\triangle^{2} \varphi_{2} = (\varphi_{1}, \varphi_{2}) + \lambda_{1}(\overline{\varphi}, \varphi_{2}) + \lambda_{2} f, & \text{in} \Omega \\
\varphi_{1} \mid_{\partial \Omega} = \varphi_{2} \mid_{\partial \Omega} = \frac{\partial \varphi_{1}}{\partial N} \mid_{\partial \Omega} = \frac{\partial \varphi_{2}}{\partial N} \mid_{\partial \Omega} = 0,
\end{cases} (5.1)$$

where φ_1 is the Airy stress function, φ_2 is the vertical objection of the plate, $\lambda_2 f$ is an external vertical load on the plate, $f \in L^2(\mathbb{R}^2)$ and $\overline{\varphi} \in W^{3,2}(\Omega)$ are known functions, and for $u, v \in W^{2,2}(\Omega)$,

$$(u,v) = \frac{\partial^2 u}{\partial x_2^2} + \frac{\partial^2 v}{\partial x_2^2} + \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_1^2} - 2 \frac{\partial^2 u}{\partial x_1 \partial x_2} + \frac{\partial^2 v}{\partial x_1 \partial x_2}.$$
 (5.2)

Let $X = (L^{2,2}(\Omega))^2$, $X_0 = (W^{2,2}(\Omega))^2$, $X_h = (U_{2,h})^2$ for $h \in (0,1)$, $X = \{\psi | \psi = (U_{2,h})^2 \}$

 $\sum_{i=1}^{L} c_i \psi_i, \ \psi_i \in \bigcup_{h \in (0,1)} X_h, \ L(N). \ \text{Define } A: \ X \to X, \ G: \mathbb{R}^2 \times \widetilde{X} \to X \ \text{as follows},$

$$(A\varphi, \psi) = \sum_{i=1}^{2} \int_{\Omega} (\varphi_{i}^{(2,0)} \psi_{i}^{(2,0)} + 2\varphi_{i}^{(1,1)} \varphi_{i}^{(1,1)} + \varphi_{i}^{(0,2)} \psi_{i}^{(0,2)}) dx, \ \forall \varphi, \psi \in X,$$
 (5.3)

$$(G(\lambda, \varphi), \psi) = (\varphi_2, \varphi_2, \psi_1)/2 - B(\varphi_1, \varphi_2, \psi_2) - \lambda_1 B(\bar{\varphi}, \varphi_2, \psi_2) - \lambda_2 \int_{\Omega} f \psi_2^{(0,0)} dx,$$

$$\forall \varphi \in \widetilde{\mathbf{X}}, \quad \psi \in \mathbf{X},$$
 (5.3)

where, for u, v and w in $L^{2,2}(\Omega)$,

$$B(u,v,w) = \int_{\Omega} \{ (u^{(1,0)}v^{(0,1)} + u^{(0,1)}v^{(1,0)}) w^{(1,1)} - (u^{(0,1)}v^{(0,1)} + u^{(0,1)}v^{(1,0)}) \} \}$$

$$= u^{-(1,0)} v^{-(1,0)} w^{-(2,0)} = u^{-(0,1)} v^{-(0,1)} w^{-(0,2)} dx,$$
 (5.5)

if the right hand of (5.5) makes sense.

The weak form of (5.1) is the problem,

$$\varphi \in \mathbf{X}_{0,+}(A\varphi,\psi) + (G(\lambda,\varphi),\psi) = 0, \quad \forall \psi \in \mathbf{X}_{0}. \tag{5.6}$$

And the finite element method for (5.6) is the following problem,

$$\varphi_h \in \mathbf{X}_h, \quad (A\varphi_h, \psi_h) + (G(\lambda, \varphi_h), \psi_h) = 0, \quad \forall \psi_h \in \mathbf{X}_h$$
 (5.7)

For the solutions of (5.7), we have the similar conclusions.

Theorem 5 Let (H3) and (H4) hold for $\sigma = 2$. Then i) if Λ is a bounded closed set in \mathbb{R}^2 and $\{(\lambda, \psi(\lambda)) | \lambda \in \Lambda\}$ is a branch of nonsingular solutions of equation (5.6), then equation (5.7) has, for h sufficiently small, a unique branch of solution $\{(\lambda, \varphi_h(\lambda)) | \lambda \in \Lambda\}$, such that for $i \geq 0$,

 $\lim_{h\to 0}\sup_{\lambda\in\Lambda}\|\mathbf{d}^{i}(\varphi(\lambda)-\varphi_{h}(\lambda))\|_{\mathbf{L}_{i}(\mathbf{R}^{2},\mathbf{X})}=0; \text{ ii) if } (\lambda^{0},\varphi^{0}) \text{ is a limit point of equation } \{(\lambda(t),\varphi(t))\mid t\in\mathbf{S}^{a}_{2}\}$ with $(\lambda(0),\varphi(0))=(\lambda^{0},\varphi^{0})$, and for h sufficiently small, equation (5.7) has a unique branch of solution $\{(\lambda_{h}(t),\varphi_{h}(t))\mid t\in\mathbf{S}^{a}_{2}\}\}$ such that for $i\geq 0$,

$$\lim_{h\to 0}\sup_{t\in S_{\frac{q}{2}}}\{\|d^{i}(\lambda(t)-\lambda_{h}(t))\|-\|d^{i}(\varphi(t)-\varphi_{h}(t))\|_{L=R^{-1}\times}\}=0;\quad \text{iii) now}$$
 set the second component of λ be one, thus equations (5.6) and (5.7) are equations only containing one parameter λ_{1} , if $(\lambda_{1}^{0},\varphi^{0})$ is a simple bifurcation point of (5.6), then there exists a neighborhood U of $(\lambda_{1}^{0},\varphi^{0})$ in $R\times X$ and $h_{0}\in(0,1)$, such that, for $h\leq h_{0}$, the set φ_{h} of the solutions of (5.7) contained in U consists of two infinitely differentiable branches and the distance between φ_{h} and the set of the solutions of (5.6) contained in U con-

verges to 0 as $h \rightarrow 0$.

From theorem 5, we can conclude that the well-known conforming elements, the nonconforming elements such as Adini's element and Morley's element, and 9-parameter, 12-parameter and 15-parameter quasi-conforming elements are valid for equation (5.6).

The author wish to thank Professor Zhang Hongqing for his hearty support.

References

- [1] Wang Ming, J. Math. Research and Exposition, 1987, No. 4, 671 680.
- [2] Zhang Hongqing, Wang Ming, Applied Math. and Mech., 6.1, 41-52, (1985).
- [3] Zhang Hongqing, Wang Ming, Applied Math. and Mech., 7, 5, 409 -423, (1986).
- (4) Wang Ming, Zhang Hongqing, The embedding and compact properties of finite element spaces, Appl Math. Mech, 9, 2, 127 -134 (1988).
- (5) Wang Ming, Zhang Hongqing, JCM, 4, 2, (1986).
- [6] Ciarlet, P.G., The Finite Element Methods for Elliptic Problems, North-Holland, 1979.
- [7] Stummel, F., RAIRO, Numer. Anal., 4, 1, 81-115, (1980).
- [8] Stummel, F., SIAM J. Numer. Anal., 16, 449 -471, (1979).
- [9] Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, RAIRO, $8~R_2$, 129~-151~(1974).
- (10) Girault, V., Raviart, P. A., Finite Element Approximation Navier-Stoke's Equations, Lectrue Notes in Math., 749, 1979.
- (11] Crouzeix, M., Raviart, P.A., RAIRO, Numer, Anal., 7 R₃, 33-76 (1973).