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Abstract We establish a characterization theorem for a nearly zero Bool
ean idempotent matnx.

I . Introduction. Thisiis a continuation of three papers { 8], (9 ] and
C10). A class of semigroups M,{ 0, 1} considered in (5] and (11] is consider
ed as a part of a class of fuzzy matrix semigroups M,(F)(see (2], (3], (al),
where F is a finite set, A class of fuzzy matrix semigroups ({23, (3], (4 )
is considered as a part of a class of Boolean matrix semigroups M (2%) (see
{83, {92, (10)) where S is an arbitrary set, Fuzzy matrix semigroups M (F)
have their applications (see [ 6 J, [ 7)) in Mathematical Economics. In this
paper we study nearly zero idempoient Boolean matrices (see Definition) in
the semigroup M, (2°= K) of all Boolean matrices over K, where S is a set
(see (83, L9, 10D,

2. Definition and theorem

We begin with a definition,

Definition Let S be a set and K=2%. We denote by M,(K; the semig
group (see {10]) of all ax n Boolean matrices over K.

A= (q, in M,(K) is said to be a nearly zero Boolean idempotent matrix
if A4A= A, a,+ and q;; = for all iz 2, where (7 denotes the empty set,

We prove the following theorem which characterizes nearly zero Boolean
idempotent matrices in M, (K).

Theorem | A= (a,) is a nearly zero Boolean idempotent matrix iff a,, #

.y 4, =a,a, for all i and j, and @, a4~ for izt
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Proof Suppose that the conditions hold for 4, We show that 4 is a near-
ly zeor idempotent matrix, The last condition implies that a;.a,= ¢ for i#j.

L)

Letting B=(b,,) = A4 we show that b,= g, for all i and j. We first see that

n
b,;=a, for all i and j, We first see that b, = Za‘,a,,:ana,,+alzan+-—+ a,,a,
1=1

+e+ a4, = a,a, = a, because a,a,=, for k1. The condition g, = aq,a,,

implies that a,,=a,,a,; ( j=2) and hence a,; is a subset of g,. Similarly, w
n

we have that a, is a subset of g, (/j=2). Thus we can see that b= Za,,a”.
=1

=a0,a);+ Gaay;+ 0+ G ,4,, T ay;+ a,ay 4y + 000+ ay 4,4, = a,; because a,a,=( (u=
2 .Similarly, we can prove that b, =a, for all j=2. We now show that p,;

= a,; for all j and j greater than 1,
n n n '
We see that b, = a,a,;=a;+ Y a,a,,= a,+ Y a,a,a,ai= a;; because a,=
=1 =2 =2
aga;; and a,a,= a,a, =, for r~1, Thus we have proved that b, = q, for all
i and j, (We note that g,=a,a,="" for i>1.) We have that A4 is a nearly

zero Boolean idempotent matrix, Conversely we assume that A4 is a nearly zero
n
idempotent matrix, For k-1, we have that (J=a,= ). a,a, and hence g,a,,
. r=1

= * for all r and k-~ 1. From 4*'= A4, it is not difficult to show that, for i+

1 i
AR ol LA

Le ad, 2=ca, 4, ="~ which is a term of g, = Z---Zzai, a, *a, a (1) It
. g, 6o

is clear that «,/ «, ¢, and a;,=a,aq,; for i 1., We show that g, =a,a,; for i
n

2 -~
2. j 2. in several steps, We define a,,(2): Y a,a, and a,(2:0 - a,a,. Then
(R .

we see that a,(2:5) - for seli, ji. We know that 4,(2:1) = a, a, is to be
proven, Thus we may say that q,(2) has (n-3) terms to be considered. Letting
k41, we assume that q,(2: k) is one of (n-3) terms of q,(2).We shall show
that a,(2:k) =, which showing that a,,=a,a,,. (2) We define q,(3) =

i

L azagua,; and g, (m = Z 22 apd;,***a, , a for m: 3., We can see that

o [ no e -2

a;(3) has (n-3) terms because a,(3:s5) =aya,a,=" for all s in i, k, j|. We

denote [i, j, ki by T(3). Inductively we assume that (m 3)ya,(m -1) = Y .5 3",
. L ot

Ay d, el Jhasan—-3)(n—4)+-(n-m+1) terms to be considered., We show that

a,,tm has (n-3)tn—4)+=(n—m) terms (to be considered). (3) To prove this

we define a (m:kyy kyy ooty k3o D =aya,,a, a, ,a,and a set T(m =i, k, k,
N i 172 -

Ny
eae, /\m -

Ji. We can prove that the cardinality [Tcm | of the Tom is equal to
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m, that is, [Tcm |= m, It is trivial to show that a, m: k. k,. *. K, 9 for
s -Tomy . Thus we have proved that a om) has <n 3icn [ieecn m terms, 1 We
can have m=n, a,,(m)=¢5 and consequently we have a,(2: k) =, Thus we

have a;,= aya,; for i=1#j. (If n=2 or n=3 then we can prove that a,=aq,q, ,.)
(5) For k#£1 we can see that g, ,= Zn:a,,a,,(: a,, a,, because a,4,= a,a,a,, ="
=1
(t#1). similarly, we have a,,=a,q,. This proves the theorem,
3. An Additional Theorem.

We shall prove the following theorem,
Theorem 2 Let A=(a;) € M,(K) and assume that q,#( for i<k, and a,-

1
¢y for i>k, where k, is a positive integer such that 2<"k,<_n. Then A is an
ko
idempotent matrix iff a,= ) a,a, and @,4,,+a,;Ca, for all iand j.
r=1

Proof Suppose that the condition holds for A, Letting AA= B b)) we show

that bij =-a

e

n k n n
We can see that b;= ) a,a,= 3 a,a;+ ). a,a,=a,+ ), aa,=a,
1 =1 1 ’ ’ = k

i 7]
i= ek, + 1= kg 1

n
since ). a,a,_a;. Thus we have that q,= b
1= kot L

.+ Conversely we show that if
k

A is an idempotent then g, = : a4, and a,q a ;a4
=

for all i and j, We

assume that A is an idempotent matrix, Then AAde-4=4"1'=- 4, from which
k
we obtain that an,ar,z,"""”r,fgafj' We show that a,= i; a,a,. ¥We can see that

1=
k,

n k n
Q= Y, A,a,= i + /<Z1ak'a'k: i: aa, since aya,= a,a,= . for r-k,, We define
1= 1 i=1 1= 0+ 1

a,(2)= 3 a,a,; and a,;(2:1) = a,a,; as a function of t as well as a term of 4 (2,
=1 AR
(1) Let a,,2: k)= aya,; for k>>k, and i+ j. We shall show that q,(2: k)
k T
is a subset of }:a,,a,j in several steps. We note that a,(3: k) = a,f Lak,a,,)
=1 =1

has n-1 terms to be considered becauce g, a,4a,, = a,(3:k, k)=71. We define

n
a (m k., kyy <, k_3) = @k B i Qi 3( a, .4,) assuming that a, (m- 1: &,
t=

m 4w 1

n
Ky vy Kpd) = @ a0, sk.‘(,; a, “,a”.) has (n- (m-3)) terms to be consi

dered. (This means that the set {k,, k,, =, k., has the cardinality m-4 and
each s in {k, k), +, k, . is greater than k,.)
(2) We prove that q, (m:k,, k,, *-, k, ;) has (n-(m-2)) terms to be
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considered. (We note that for a case m =4 a proof is simple and hence we

assume that m>~ 4. ) To prove it we define a,,(m: k,, kyy ooy k, 33 D= a,a,,4,,
Nadi

clear that a,(m: k., ky *=, k, . = for sin [k, k, ky e+ k. ) which has

the cardinality m- 2 because of the assumption on the set in (1), Thus we

~+a, g, as a function of r as well as a term of a (m:k, k, <=, k, . It is

have shown that a,(m: k,, k,, **+, k, y) has (v on - 2)iterms to be considered .

k k
(3) We know that a;,a,,:,"'a:mjgai.i and hence a,( i]ak,a,, ;’: a;,a,;. There
] = =
-k
fore when we take out terms a,( 2 ak,a,j) from our counting we may say
=1

that a, (3: k) has n- (k,+ 1) terms ‘o be éonsidered. Similarly, we can say
that a, (m: k. k, *, k, ;) has (n-(k,+m- 2)) terms to be considered,

n- (ky+m- 2)=0 then theretare no terms of aij(m:' kyy ko *** k, ;) to be con

m 3
sidered,
k

(4) We conclude that q,;(2: k) is a subset of 2 a,.,a,jkfrom (1), (2D
’ t=1 0
k
and (3). Thus we have proved that g, = 2 a,a

This proves the theorem,
t=1 a

1j*

We state the following

Proposition Let 4= (g€ M(K). If 4is an idempotent matrix and a;=
(~ for all i, then a,=( for all i and j.

A technique of ihe proof or the proposition is similar to that of the proof
of Theorem | and we omit the proof,
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