A Note on Young's Integral Inequality*

L.C Hsu (徐利治)

(Dalian University of Technology)

The well-known inequality of W.H. Young may be written as

$$ab \leq \int_0^a \phi(x) dx + \int_0^b \psi(x) dx,$$

where a>0, b>0, and $\phi(x) \in C(0,\infty)$ increases strictly with x and $\phi(0)=0$, and $\psi(x)$ is the inverse function so that $\psi(\phi(x))=\phi(\psi(x))=x$. An investigation into the graphs of the functions $y=\phi(x)$ and $x=\psi(y)$ reveals that

$$\int_{0}^{a} \phi(x) dx + \int_{0}^{b} \psi(x) dx = b\psi(b) - \int_{0}^{\phi(b)} \phi(x) dx.$$
 (*)

This holds generally when $a < \psi(b)$ or $a \ge \psi(b)$. Since $(\psi(b) - a)(b - \phi(a)) \ge 0$ it is easy to deduce from (*) the inequalities

$$ab \leq \int_0^a \phi \, dx + \int_0^b \psi \, dx \leq a\phi(a) + b\psi(b) - \phi(a)\psi(b). \tag{1}$$

Assuming the convexity of $\phi(x)$, one may get a refinement of (1), viz.

$$ab + \frac{1}{2} [b - \phi(a)] [\psi(b) - a] \leq \int_0^a \phi dx + \int_0^b \psi dx, \qquad (2)$$

whenever $\phi''(x)(b-\phi(a))\geq 0$. The inequality will be reversed if $\phi''(x)(b-\phi(a))\leq 0$.

A further refinement of (2) can be obtained via (*) and by making use of a known proposition in Polya-Szego's "Aufgaben und Lehrsatze aus der Analysis". Theorem: Let $\phi'(x)$ be monotone and denote

$$S_n = S_n(a, b) = b\psi(b) - h\left[\frac{\phi(a) + b}{2} + \sum_{j=1}^{n-1} \phi(a + jh)\right],$$
 (3)

where $h = (\phi(b) - a)/n$, $(n = 2, 3, \dots)$. Then we have

$$\left| \int_0^a \phi \, \mathrm{d}x + \int_0^b \psi \, \mathrm{d}x - S_n \right| \leq \frac{1}{8} h^2 \left| \phi'(a) - \phi'(\psi(b)) \right|.$$

In particular, for n large $S_n(0, b)$ provides an approximation to $\int \psi dx$ with error estimate $O(n^{-2})$,

^{*} Received August, 8, 1988.