Score Vectors of t-reducible Tournaments*

Li Jiongsheng(李炯生)

Huang Guoxun(黄国勋)

(University of Science and Technology of China)

(Guangxi University)

Abstract The definitions of t reducible and exactly t reducible n tournaments are introduced. Criteria are found for determining (i) whether a tournament with a given score vector \mathbf{R} is t reducible and (ii) whether it is exactly t reducible.

I. lutroduction

Let T_n be an n tournament with vertex set $V(T_n) = \{v_1, v_2, \dots, v_n\}$. The score of the vertex v_i in T_n is denoted by r_i , $i = 1, 2, \dots, n$ and $r_1 \leqslant r_2 \leqslant \dots \leqslant r_n$. Then the score vector of T_n is $R = (r_1, r_2, \dots, r_n)$. Conversely, let $R = (r_1, r_2, \dots, r_n)$ be an non negative integral vector in which $0 \leqslant r_1 \leqslant r_2 \leqslant \dots \leqslant r_n$, then R is said to be a score vector if there is some T_n such that its score vector is just R. The set of all n tournaments with score vector R is denoted by $\mathcal{J}(R)$. H. G. Landau [1] has shown the following.

Theorem 1.1 Let $\mathbf{R} = (r_1, r_2, \dots, r_n)$ be an non negative integral vector in which $0 \quad r_1 = r_2 \quad \cdots \quad r_n$. Then $\mathcal{J}(\mathbf{R}) \neq \emptyset$ if and only if for $j = 1, 2, \dots, n$,

$$r_1 + r_2 + \cdots + r_j \gg (\frac{j}{2})$$
,

with equality for j = n.

For strong tournaments, F. Harary and L. Moser [2] have proved the follwing.

Theorem 1.2 Let $R = (r_1, r_2, \dots, r_n)$ be the score vector of T_n . Then T_n is strong if and only if for $j = 1, 2, \dots, n-1$,

$$r_1 + r_2 + \cdots + r_j > (\frac{j}{2}) + 1.$$

In this paper, we introduce the new definition as follows.

Definition 1.3 An n tournament T_n is called t reducible if its every subtournament induced by n-t+1 vertices of T_n is reducible. A t reducible n tournament T_n is said to be exactly t reducible if it is not (t+1) reducible.

It is easy to see by Definition 1.3 that a 1 reducible n tournament is reducible. Considering (degenerate) tournaments with one vertex to be strong and

^{*} Received Nov.18, 1985.

observing that no tournament with two vertices is strong, it follows that (1) no n tournament is n reducible, (2) every n tournament is exactly (n-1) reducible and (3) an n tournament can be (n-2) reducible, but it cannot be exactly (n-2) reducible.

The purpose of this paper is give criteria for determining whether a given n tournament with score vector \mathbf{R} is (i) t reducible and (ii) exactly t-reducible.

In what follows, we always assume that T_n U denote the subtournament which is obtained by deleting the set $U \subseteq V(T_n)$ from T_n . Particularly, we write T_n u for T_n U if $U = \{u\}$.

2. Mian Results

Lemma 2.1 Let $2 \le t \le n-2$. Then the *t*-reducible *n* tournament T_n is (t-1) reducible.

Proof Assume T_n is not (t-1) reducible. Then T_n has a strong subtournal ment T_{n-t+2} induced by n-t+2 vertices of T_n . Observing $n-t+2 \ge 4$, T_{n-t+2} has an (n-t+1) cycle. Let the vertex u of T_{n-t+2} be not contained in the cycle. Then the subtournament $T_{n-t+2}u$ is strong. Hence T_n will be not t reducible, a contradiction. Thus, T_n must be (t-1) reducible. The proof is completed.

Corollary 2.2 Let $1 \le t \le n-2$. Then the *t*-reducible *n* tournament T_n is reducible.

Proof It is a simple consequence of Lemma 2.1.

Suppose the *n* tournament T_n is reducible. Then T_n has a decomposition into the strong components S_1, S_2, \dots, S_p , $p \ge 2$, such that $V(S_1), V(S_2), \dots, V(S_p)$ is a non-trivial partition of $V(T_n)$ and $v \rightarrow u$ for any $u \in V(S_i)$ and $v \in V(S_j)$, where $i \in J$, $v \in V(S_i)$. On the decomposition S_1, S_2, \dots, S_p of T_n , we have.

Lemma 2.3 Let T_n has a decomposition into strong components S_1, S_2, \dots, S_p , $p \ge 2$ and let $n_i = |V(S_i)|$, $i = 1, 2, \dots, p$. Then, for $i = 1, 2, \dots, p$,

$$V(S_i) = \{v_{k_{i-1}+1}, v_{k_{i-1}+2}, \dots, v_{k_i}\},$$

where $k_0 = 0$ and $k_i = n_1 + n_2 + \cdots + n_i$, $i = 1, 2, \cdots, p$.

Proof Let r(u) be the score of $u \in V(T_n)$. Since S_1, S_2, \dots, S_p is a decomposition of T_n , so that $v \rightarrow w$ for any $w \in V(S_i)$ and $v \in V(S_j)$, $1 \le i \le p$. If S_i is trivial, i.e., $n_i = 1$, then

$$r(w) = n_1 + n_2 + \cdots + n_{i-1} \le n_1 + n_2 + \cdots + n_{i-1} + n_i + \cdots + n_{i-1} \le r(v);$$

If S_i is non trivial, then $n_i \ge 3$ and the score $\widetilde{r}(w)$ of w in S_i satisfies $\widetilde{r}(w) \le n_i - 2$. Therefore,

$$r(w) = n_1 + n_2 + \cdots + n_{i-1} + (n_i - 2) - n_1 + n_2 + \cdots + n_i \le r(v)$$
.

Thus, the vertices with smaller index in $V(T_n)$ are contained in the component with smaller index. The lemma is proved.

Let $\mathbf{R} = (r_1, r_2, \dots, r_n)$ be the score vector of \mathbf{T}_n . Denote

$$h_j = r_1 + r_2 + \cdots + r_j - (\frac{j}{2}), \quad j = 1, 2, \cdots, n-1.$$

Let

$$h(\mathbf{R}) = \min\{h_i \mid j = 1, 2, \dots, n-1\}$$
.

By Theorem 1.2, T_n is reducible if and only if $h(\mathbf{R}) = 0$. Write

$$J = \{j \mid 1 \le j \le n \text{ and } h_j = 0\}.$$

From Theorem 1.1 and 1.2, T_n is reducible if and only if $|\mathbf{J}| > 2$, where $|\mathbf{J}|$ is the cardinal of J. Let T_n be reducible and denote $\mathbf{J} = \{j_1, j_2, \dots, j_m\}$ in which $0 = j_0 < j_1 < j_2 < \dots < j_{m-1} < j_m = n$. The vector $(j_0, j_1, j_2, \dots, j_{m-1}, j_m)$ is called the reducible type of T_n . Clearly, the reducible type of n tournaments depends on only its score vector \mathbf{R} .

Lemma 2.4 The reducible type of T_n is $(j_0, j_1, j_2, \dots, j_m)$ if and only if T_n has a decomposition S_1, S_2, \dots, S_m such that

$$\mathbf{V}(\mathbf{S}_{i}) = \{v_{j_{i-1}+1}, v_{j_{i-1}+2}, \dots, v_{j_{i}}\},$$

where $i = 1, 2, \dots, m$.

Proof Suppose that the reducible type of T_n is $(j_0, j_1, j_2, \dots, j_m)$, then

$$r_1 + r_2 + \dots + r_{j_i} = (\frac{j_i}{2}), i = 1, 2, \dots, m.$$
 (2.1)

and for $j \neq j_i$, $i = 1, 2, \dots, m$,

$$r_1 + r_2 + \dots + r_j \geqslant (\frac{j}{2}) + 1$$
 (2.2)

Let S_i denote the subtournament induced by the vertices $v_{j_{i-1}+1}$, $v_{j_{i-1}+2}$, ..., v_{j_i} in T_n . By (2.1) and (2.2), the score \widetilde{r}_j of $v_{j_{i-1}+j}$ is equate to $r_{j_{i-1}+j}-j_{i-1}$. Therefore, for $j=1,2,\cdots,j_i-j_{i-1}-1$,

$$\widetilde{r}_{1} + \widetilde{r}_{2} + \cdots + \widetilde{r}_{j} = \sum_{k=1}^{j} r_{j_{i-1}+k} - j \cdot j_{i-1} = \sum_{k=1}^{j_{i-1}+j} r_{k} - \sum_{k=1}^{j_{i-1}+j} r_{k} - j \cdot j_{i-1}$$

$$\geqslant (\frac{j_{i-1}+j}{2}) + 1 - (\frac{j_{i-1}}{2}) - j \cdot j_{i-1} = (\frac{j}{2}) + 1.$$

By Theorem 1.2, S_i is strong, $i=1,2,\cdots,m$. Moreover, let T_{j_i} be the subtournament induced by the vertices v_1,v_2,\cdots,v_{j_i} . If $u \in V(S_i)$ and $v \in V(S_i)$, $1 \le i \le j \le m$, then $u \in V(T_{j_i})$ and $v \in V(T_n - T_{j_i})$. By (2.1) and (2.2), $v \rightarrow u$. Thus, S_1, S_2, \cdots , S_m is a decomposition of T_n .

Conversely, suppose that T_n has a decomposition S_1 , S_2 , ..., S_m such that $V(S_i) = \{v_{j_{i-1}+1}, v_{j_{i-1}+2}, \dots, v_{j_i}\}$, $i = 1, 2, \dots, m$. Then the score \tilde{r}_j of $v_{j_{i-1}+j}$ in S_i is equale to $r_{j_{i-1}+j} - j_{i-1}$, $j = 1, 2, \dots$, $j_i - j_{i-1}$. Observing S_i is strong, it follows from Theorem 1.2 that for $j = 1, 2, \dots$, $j_i - j_{i-1} - 1$,

$$\widetilde{r}_1 + \widetilde{r}_2 + \cdots + \widetilde{r}_j = \sum_{k=1}^j r_{j_{i-1}+k} - j j_{i-1} \geqslant (\frac{j}{2}) + 1,$$

and

$$\widetilde{r_{1}} + \widetilde{r_{2}} + \cdots + \widetilde{r}_{j_{1} - j_{i-1}} = \sum_{k=1}^{j_{i} - j_{i-1}} r_{j_{i-1} + k} - (j_{i} - j_{i-1}) j_{i-1} = (j_{i} - j_{i-1}) j_{i-1}$$

Therefore,

$$\sum_{k=1}^{j_{i-1}} r_{j_{i-1}+k} = {j_{i}-j_{i-1} \choose 2} + (j_{i}-j_{i-1}) + (j_{i}-j_{i-1}) + {j_{i-1} \choose 2} - {j_{i} \choose 2}$$

Thus.

$$\begin{split} \sum_{k=1}^{j_i} r_k &= \sum_{k=1}^{j_1} r_k + \sum_{k=1}^{j_2-j_1} r_{j_1+k} + \cdots + \sum_{k=1}^{j_{i-1}} r_{j_{i-1}+k} \\ &= (\frac{j_1}{2}) + \left[(\frac{j_2}{2}) - (\frac{j_1}{2}) \right] + \cdots + \left[(\frac{j_i}{2}) - (\frac{j_{i-1}}{2}) \right] = (\frac{j_i}{2}) \,. \end{split}$$

Moreover, if $j \neq j_i$, $i = 1, 2, \cdots$, m, then there is some integer j_{i_0} such that $j_{i_0-1} < j_{i_0}$. Thus,

$$\sum_{k=1}^{j} r_{k} = \sum_{k=1}^{j_{i_{n-1}}} r_{k} + \sum_{k=1}^{j-j_{i_{n-1}}+k} r_{j_{i_{n-1}}+k}$$

$$\geqslant (\frac{j_{i_{0}-1}}{2}) + (j-j_{i_{0}-1}) j_{i_{0}-1} + (\frac{j-j_{i_{0}-1}}{2}) + 1 \geqslant (\frac{j}{2}) + 1.$$

This shows that the reducible type of T_n is $(j_0, j_1, j_2, \dots, j_{m-1}, j_m)$

The proof of the lemma is completed.

Denote

$$a(\mathbf{R}) = \max \{a_i = j_i - j_{i-1} | i = 1, 2, \dots, m\},$$

where $(j_0, j_1, j_2, \dots, j_m)$ is the reducible type of T_n with score vector R. By Lemma 2.4, $\alpha(R)$ is the size of the largest (i.e. greatest number of vertices) strong component of $T_n \in \mathcal{J}(R)$.

The mian result of this paper is the following.

Theorem 2.5 Let $R = (r_1, r_2, \dots, r_n)$ be a score vector. Then $T_n \in \mathcal{F}(R)$ is exactly t reducible if and only if a(R) = n - t, where $1 \le t \le n - 3$.

Proof To prove the theorem, it suffices to show that T_n is exactly t reducible if and only if the size of the largest component of T_n is of size $n \cdot t$.

Suppose T_n is exactly t reducible. Then, (1) T_n is t-reducible and (2) T_n is not (t+1) reducible. From (1), every subtournament with at least n-t+1 vertices is reducible Thus, there is no component of size greater than n-t. From (2), T_n has a component of size at least n t. Thus the largest component is of size $n \cdot t$.

Couversely, suppose the largest component of T_n is of size n t. Then T_n has a strong subtournament with n t vertices. Thus T_n is not (t+1) - reducible. Moreover, T_n has a decomposition S_1, S_2, \dots, S_p , $p \ge 2$ such that for some i, $|V(S_i)| = n - t$. Let T_{n-t+1} be any subtournament induced by n-t+1 vertices of T_n . Clearly, there are Some j such that $V(T_{n-t+1}) \cap V(S_j) \neq \emptyset$. Denote

 $j_0 = \max\{j \mid 1 \le j \le p \text{ and } V(T_{n-t+1}) \cap V(S_i) \neq \emptyset\}$

Write $U = V(T_{n-t+1}) \cap V(S_{j_0})$. Obviously, $1 \le |U| \le |V(S_{j_0})| \le |V(S_i)| = n-t$. By $|V(T_{n-t+1})| = n-t+1$, so that $W = V(T_{n-t+1}-U) \neq \emptyset$. Thus U and W is an non trivial partition of $V(T_{n-t+1})$. Let $w \in W$ and $u \in U$, then for some j, $w \in V(S_j)$ and $u \in V(S_{j_0})$. By the maximality of j_0 , it follows that $j = j_0$. Considering S_1, S_2, \cdots , S_p is a decomposition of T_n , so that $u \rightarrow w$. This implies that T_{n-t+1} is reducible. Thus T_n is t-reducible. This proves that T_n is exactly t-reducible.

This is complete the proof of the theorem.

Theorem 2.6 The *n* tournament T_n is (n-2) - reducible if and only if it is transitive, where $n \ge 3$.

Proof Obvious.

By using Theorem 2.5 and 2.6, it follows that every n-tournament in $\mathcal{F}(R)$ is exactly t-reducible if $\mathcal{F}(R)$ has an exactly t-reducible n-tournament.

Corollary 2.7 Let n > 3. Then $T_n \in \mathcal{I}(R)$ is t reducible if and only if $a(R) \le n - t$, where $1 \le t \le n - 2$.

Proof This a simple consequence of Theorem 2.5 and 2.6.

Corollary 2.8 Let $n \ge 4$. Then $T_n \in \mathcal{F}(\mathbb{R})$ is exactly 1 reducible if and only if one of the following conditions holds:

- (1) $r_1 = 0$ and for $j = 2, 3, \dots, n-1, r_1 + r_2 + \dots + r_j = (\frac{j}{2}) + 1$,
- (2) $r_n = n 1$ and for $j = 1, 2, \dots, n 2, r_1 + r_2 + \dots + r_j = (\frac{j}{2}) + 1$.

Proof This is the case $a(\mathbf{R}) = n - 1$ in Theorem 2.5.

Remark Corollary 2.8 gives a criteria for determining whether a n tournament has no Hamiltonian cycle, but it has an (n-1) cycle.

Corollary 2.9 Let n > 4. Then $T_n \in \mathcal{F}(R)$ is reducible if and only if one of the following conditions holds:

- (1) $r_1 = 0$ and $r_n = n 1$;
- (2) there is some integer j, $2 \le j \le n-2$ such that $r_1 + r_2 + \cdots + r_j = \binom{j}{2}$.

Proof This is the case t=2 in Corollary 2.7.

References

- [1] H. G. Landau, On the dominance relation and the structure of animal societies, || ... The condition for a score structure, Bull. Math. Biophys, 15(1953), 143-148.
- [2] F. Harary and L. Moser, The theory of round robin tournaments, Amer. Math Mouthly, 73 (1966), 231-246.