Second-Order Expansion for a Class of Quasidifferentiable Functions*

Z.Q. Xia (夏 尊 铨)

(Dalian University of Technology, China)

Suppose f, $g: \mathbb{R}^n \to \mathbb{R}$ are quasidifferentiable, and for an interval $(x, y) \subset \mathbb{R}^n$ one has $0 \in \langle \underline{\partial} g(\xi) + \overline{\partial} g(\xi), y - x \rangle$, $\xi \in (x, y)$. Then there exists an $\eta \in (x, y)$ such that

$$\frac{f(y) - f(x)}{g(y) - g(x)} \in \frac{\langle \underline{\partial} f(\eta) + \overline{\partial} f(\eta), y - x \rangle}{\langle \underline{\partial} g(\eta) + \overline{\partial} g(\eta), y - x \rangle}$$

Suppose a function f defined in \mathbb{R}^n is differentiable and its gradient is qua sidifferentiabe. Then for any $x \in \mathbb{R}^n$, $d \neq 0$, and $\lambda > 0$, one has $f(x + \lambda d) \in f(x) + \lambda f'(x; d) + (\lambda^2/2) d^{\mathsf{T}}(\partial^2 f(x + \xi d) + \partial^2 f(x + \xi d))d$, for some $\xi \in (0,1)$.

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ where $f = (f_1, \dots, f_m)^T$ and $\varphi: \mathbb{R}^m \to \mathbb{R}^n$. Suppose f and φ are continuously differentiable, and assume that $\nabla f(x)$ is quasidifferentiable and $\nabla \varphi$ is uniformly quasidifferentiable. Then, (φ, f) is twice quasidifferentiable and one has that

 $(\varphi \cdot f)''(x;d_1,d_2) = (\varphi'_{f(x)} \cdot f''_x + \varphi''_{f(x)} \cdot (f'_x))(d_1,d_2),$ where $(f'_x)(d_1,d_2) := (f'_x(d_1),f'_x(d_2))^T = (f'(x;d_1),f'(x;d_2))^T,$ and

$$\mathbf{D}^{2}\left(\varphi\boldsymbol{\cdot}f\right)\left(x\right)=\nabla_{f}^{T}\varphi\left(f(x)\right)\boldsymbol{\cdot}\mathbf{D}^{2}f(x)+\boldsymbol{J}^{T}f(x)\boldsymbol{\cdot}\mathbf{D}_{f}^{2}\varphi\left(f(x)\right)\boldsymbol{J}f(x)\,,$$

where

$$\mathbf{D}^2 f \coloneqq \begin{vmatrix} \mathbf{D}^2 f_1 \\ \vdots \\ \mathbf{D}^2 f_m \end{vmatrix},$$

$$\boldsymbol{J}^T f(\boldsymbol{x}) \ \boldsymbol{\mathsf{D}}_f^2 \varphi(f(\boldsymbol{x})) \ \boldsymbol{J} f(\boldsymbol{x}) = \big(\boldsymbol{J}^T f(\boldsymbol{x}) \cdot \underline{\boldsymbol{\vartheta}}_f^2 \varphi(f(\boldsymbol{x})) \ \boldsymbol{J} f(\boldsymbol{x}) \ , \ \boldsymbol{J}^T f(\boldsymbol{x}) (\overline{\boldsymbol{\vartheta}}_f^2 \varphi(f(\boldsymbol{x}))) \ \boldsymbol{J} f(\boldsymbol{x}) \big).$$

Under some assumptions suppose x is a local minimum point to minimize f(x), $x \in \mathbb{R}^n$. Then for each pair of $V \in \underline{\partial}^2 f(x)$ and $W \in \overline{\partial}^2 f(x)$ there exist vectors $g_1, g_2 \in B_1(0)$ such that

$$g_2^T V - g_1^T W \in g_1^T \underline{\partial}^2 f(x) - g_2^T \overline{\partial}^2 f(x)$$
,

where $g_1 = \sum \lambda_i d_i^{+T}$, $g_2 = \sum \lambda_i d_i^{-T}$, $d_1 \in \text{bd} B_1(0)$, $\lambda_i > 0$, $i = 1, \dots, m$, $\sum \lambda_i = 1$.

The condition given above can be rewritten as

$$(\sum \lambda_i d_i^{-T} V - \sum \lambda_i d_i^{+T} W) \in (\sum \lambda_i d_i^{+T}) \underline{\partial}^2 f(x) - (\sum \lambda_i d_i^{-T}) \overline{\partial}^2 f(x),$$

or

$$= \sum \lambda_i d_i^T \diamondsuit_2(V, W) \in \sum \lambda_i d^T \diamondsuit_1 D^2 f(x).$$

^{*} WP 87 068. July, HASA, Laxenburg Austria.