The Oscillation and Nonoscillation Theorems for A Class of General Second Order Functional Differential Equations*

Chang Yiushen (张玉森)
(Editorial Board Scientia sinica, Academia Sinica, Peking)

Abstract

The purpose of this paper is to give some sufficient conditions on f and g for ensuring that all solutions or all bounded solutions of general second order functional differential equation

(r(t)g(y'(t)))' + f(t,y(t),y(p(t)),y'(t),y'(q(t))) = 0are oscillatory, or it has at least one bounded nonoscillatory solution.

I. Introduction

The paper deals with the oscillation and nonoscillation of a class of general second order functional differential equations

(r(t)g(y'(t)))' + f(t,y(t),y(p(t)),y'(t),y'(q(t))) = 0 (1) where r(t), p(t), q(t) are continuous functions mapping $\mathbf{R}_a = (a,\infty)$ into \mathbf{R} , r(t) > 0 if $t \ge a$ and $p(t) \to \infty$, $q(t) \to \infty$ as $t \to \infty$, $g: \mathbf{R} \to \mathbf{R}$, is a continuous increasing function, g(0) = 0, f(t,u,v,w,z) mapping $\mathbf{R}_a \times \mathbf{R}^4$ into \mathbf{R} is continuous.

In this paper, we assume that every solution y of (1) exists in (t_y, ∞) , where $t_y \ge a$. A solution y(t) is called oscillation if its zero points is unbounded in (t_y, ∞) .

Equation (1) is a class of general equation, it contains the equation (r(t)y'(t))' + f(t,y(t),y(p(t)),y'(t),y'(q(t))) = 0 which was dealed with by many papers.

The purpose of this paper are to give some sufficient conditions on f and g for ensuring that all solutions or all bounded solutions of (1) are oscillatory, or (1) has at least one bounded nonoscillatory solution.

II. Oscillation

^{*} Received May, 17, 1987.

Theorem 1. Suppose that the following conditions hold for $t \ge a > 0$:

- (i) uf(t, u, v, w, z) > 0 as uv > 0,
- (ii) if y(t) is a positive increasing (or negative decreasing) function, then

$$f(t, y(t), y(p(t)), y'(t), y'(q(t)))dt = \infty (or - \infty),$$

(iii) for any constant c > 0, we have

$$\int_{-\infty}^{\infty} g^{-1} \left(\frac{\pm c}{r(t)} \right) dt = \pm \infty,$$

then every solution of (1) is oscillatory.

Proof. If the conclusion is not true, there exits a nonoscillatory solution y(t) of (1). We may assume that y(t) > 0 and y(p(t)) > 0 for $t \ge T \ge a$ without loss of generality. From (i), we have f(t,y(t),y(p(t)),y'(t),y'(q(t))) > 0 for $t \ge T$ and then (r(t)g(y'(t)))' < 0 and r(t)g(y'(t)) is decreasing for $t \ge T$, therefore, we have tow cases to discuss:

Case 1. r(t)g(y'(t)) > 0 for $t \ge T$.

According to r(t) > 0 and g(y'(t)) > 0 for $t \ge T$, we know that y'(t) > 0 for $t \ge T$ and y(t) is positive increasing in (T, ∞) , Integrating (1) from T to t > T we have

$$r(t)g(y'(t)) - r(T)g(y'(t)) = -\int_{T}^{t} f(s, y(s), y(p(s)), y'(s), y'(q(s))) ds.$$

Notice condition (ii), we get r(t)g(y'(t)) < 0 for t sufficiently large from above formula. This is a contradiction.

Case 2. There exists $T_1 > T$ such that $r(t)g(y'(t)) \le 0$ for $t \ge T_1$. Since r(t)g(y'(t)) decrease, we get

$$r(t)g(y'(t)) < r(T_1)g(y'(T_1))$$
 for $t > T_1$.

Then,

$$y'(t) \le g^{-1} \left(\frac{r(T_1)g(y'(T_1))}{r(t)} \right),$$

$$y(t) \le y(T_1) + \int_{T_0}^{t} g^{-1} \left(\frac{r(T_1)g(y'(T_1))}{r(s)} \right) ds.$$

From (iii), we get $y(t) \le 0$ for t sufficiently large. This is a contradiction to $y(t) \ge 0$.

If y(t) < 0 for $t \ge T$, we can get a similar argument. This completes the proof.

Theorem 1 generalize the theorem 1 of paper (1) because the condition III of Theorem 1 in (1) is equivalent to the condition (ii).

Theorem 2. Suppose that the condition (i) and (ii) of Theorem 1 hold, r(t) and g(x) are differentiable, r'(t) < 0 for $t \ge a$, g'(x) > 0, then every

solution of (1) is osillatory.

Proof. If y(t) is a nonoscillatory solution of (1), let y(t) > 0, y(p(t)) > 0 for $t \ge T \ge a$. Then (r(t)g(y'(t)))' < 0 and r(t)g(y'(t)) is decreasing for $t \ge T$. Now, there are two cases to discuss as Theorem 1.

Case 1. r(t)g(y'(t)) > 0 for $t \ge T$.

It follows that y'(t) > 0 and y(t) is positive increasing for $t \ge T$. As the argument in Theorem 1 we can get y'(t) < 0 for $t \ge T$. This derives a contradiction to case 1.

Case 2. There exist $T_1 \ge T$ such that r(t)g(y'(t)) < 0 for $t \ge T_1$. It follows that y'(t) < 0 for $t \ge T_1$. From (r(t)g(y'(t)))' < 0 we have r'(t)g(y'(t)) + r(t)g'(y'(t))y''(t) < 0 $(t \ge T_1)$.

Then.

$$y''(t) < -\frac{r'(t)g(y'(t))}{r(t)g'(y'(t))}$$
 $(t \ge T_1)$.

Consider r'(t) < 0 and g'(x) > 0, we get y''(t) < 0 for $t \ge T_1$. It follows that y(t) is decreasing and its curve is convex. So y(t) is decreasing and its curve is convex. So y(t) must be negative for t is sufficiently large. This contradicts y(t) > 0.

If y(t) < 0 for $t \ge T \ge a$, we can get the similar contradiction.

Theorem 3. If the following conditions hold:

- (i) uf(t,u,v,w,z) 0 if uv > 0, $t \ge a$;
- (ii) $r(t) \to \infty$ as $t \to \infty$ and $\int_{-\infty}^{\infty} g^{-1} \left(\frac{c}{r(s)}\right) ds = \infty \cdot \text{sgn } c$, where c is a arbitrary constant;
- (iii) for any positive increasing function y(t) and any constant c>0, or for any negative decreasing function y(t) and any constant c<0, we have

$$\int_{T}^{\infty} (t-T)f(t,y(t),y(p(t)),y'(t)(q(t)))dt > c \int_{T}^{T} (t)dt.$$

Then every solution of (1) oscillates.

Proof. Suppose that y(t) > 0, y(p(t)) > 0 for $t \ge T \ge a$, then r(t)g(y(t)) is decreasing for $t \ge T$. There are two cases:

Case 1. r(t)g(y'(t)) > 0 for $t \ge T$.

In this case, we get that y'(t) > 0 and y(t) is increasing for $t \ge T$. Integrating (1) form $\lambda \ge T$ to $t > \lambda$ we get

$$r(t)g(y'(t)) - r(\lambda)g(y'(\lambda)) + \int_{\lambda}^{t} f(s, y(s), y(p(s)), y'(s), y'(q(s))) ds = 0$$

Then
$$r(\lambda)g(y'(\lambda)) > \int_{1}^{t} f(s, y(s), y(p(s)), y'(s), y'(q(s))) ds$$
, (2)

Integrate the both sides of (2) form T to $t \le T$ and by part, we have

$$\int_{T}^{t} r(\lambda) g(y'(\lambda)) d\lambda > \int_{T}^{t} (\lambda - T) f(\lambda, y(\lambda), y(p(\lambda)), y'(\lambda), y'(q(\lambda))) d\lambda$$
(3)

On the other hand, because r(t)g(y'(t)) is positive and decreasing, the limit $\lim_{t\to\infty} r(t)g(y'(t))$ is existent and finite, Notice condition (ii) $\lim_{t\to\infty} r(t) = \infty$, we have $\lim_{t\to\infty} g(y'(t)) = 0$, then $\lim_{t\to\infty} y'(t) = 0$. Therefore, for any constant $c \ge 0$, there exists $T_0 \ge T$ such that $y'(t) \le a$ for $t \ge T_0$ and then g(y'(t)) = g(a) for $t \ge T_0$. From (3) we have

$$g(a)\int_{T_a}^t r(\lambda)d\lambda = \int_{T_a}^t (\lambda-T)f(\lambda,y(\lambda),y(p(\lambda)),y'(\lambda),y'(g(\lambda)))d\lambda.$$

this contradictee condition (ii1).

Case 2. r(t)g(y'(t)) < 0 for $t \ge T_1 \ge T$.

Using the argument in Theorem 1 we can get a contradiction.

If y(t) is eventually negative we can use the similar argument to discuss. The proof is completed.

Theorem 4 Suppose that the conditions (i) and (iii) of Theorem 1 hold. In addition, we assume that (ii)' if y(t) is a positive increasing function (or a negative decreasing function), then

$$\int_{-\infty}^{\infty} g^{-1} \left(\frac{1}{r(t)} \int_{s}^{t} f(s, y(s), y(p(s)), y'(s), y'(q(s))) ds \right) = d\lambda = \infty \text{ (or } -\infty \text{).}$$

Then every bounded solution of (1) is oscillatory.

Proof. Let y(t) is a bounded nonoscillatory solution of (1) and y(t) > 0, y(t) > 0 for $t \ge T + a$.

Then r(t)g(y'(t)) is decreasing for $t \ge T$. There are two cases to discuss:

Case 1. r(t)g(y'(t)) > 0 for $t \ge T$.

In this case, y'(t) > 0 and y(t) is positive increasing for $t \ge T$. From (2) we have

$$y'(\lambda) > g^{-1}\left(\frac{1}{r(\lambda)}\int_{\lambda}^{t} f(s,y(s),y(p(s)),y'(s),y'(q(s)))ds\right), \lambda \geq T, t \geq \lambda.$$

Then

$$y(\overline{t}) - y(T) \ge \int_{T} g^{-1} \left(\frac{1}{r(\lambda)} - \int_{1}^{t} f(s, y(s), y(p(s)), y'(s), y'(q(s))) ds\right) d\lambda, \overline{t} \ge T.$$

By the formula as above and condition (ii) we get that $y(\overline{t}) \rightarrow \infty$ as $\overline{t} \rightarrow \infty$. This is a contradiction to the boundedness of y(t).

Case 2. $r(t)g(y'(t)) \le 0$ for $t \ge T_1 \ge T$.

For this case, we can get a contradiction by the argument in theorem 1.

We can prove that there exists a contradiction if y(t) eventually negative.

■ . Nonoscillation

Theorem 5. If the following conditions hold for $t \ge T \ge a$,

- (i) uf(t, u, v, w, z) = 0 if uv > 0;
- (ii) f(t,u,v,w,z) is increasing with respect to u,v,w,z if u,v,w,z are nonnegative;
 - (iii) for any a > 0 and $b \ge 0$, we have

$$g^{-1}\left(\frac{1}{r(t)}\int_{t}^{s}f(s,a,a,b,b)ds\right)\to 0$$
 as $t\to\infty$.

(iv) for any a > 0, we have

$$\int_{T} g^{-1} \left[\frac{1}{r(t)} \int_{T} f(s,a,a,o,o) ds \right] dt \qquad .$$

Then (1) has at least a bounded increasing solution.

Proof. Consider the integral equation

$$y(t) = 1 - \int_{-1}^{1} g^{-1} \left(\frac{1}{r(\lambda)} \int_{\lambda}^{\infty} f(s, y(s), y(p(s)), y'(s), y'(q(s))) ds \right) d\lambda.$$
 (4)

Obviously, its solution satisfies (1).

Set $y_0(t) \equiv 1$

$$y_{n}(t) = 1 - \int_{t}^{\infty} g^{-1} \left(\frac{1}{r(\lambda)} \int_{\lambda}^{\infty} f(s, y_{n-1}(s), y_{n-1}(p(s)), y'_{n-1}(s), y'_{n-1}(q(s))) ds \right) d\lambda,$$

$$n = 1, 2, \dots.$$
(5)

Then

$$y_{1}(t) = 1 - \int_{r}^{\infty} g^{-1} \left(\frac{1}{r(\lambda)} - \int_{\lambda}^{\infty} f(s, 1, 1, 0, 0) ds \right) d\lambda,$$

$$y'_{1}(t) = g^{-1} \left(\frac{1}{r(t)} - \int_{\lambda}^{\infty} f(s, 1, 1, 0, 0) ds \right).$$

From (iv), there exists $t_1 \ge a$ such that

$$\int_{t}^{\infty} g^{-1} \left(\frac{1}{r(\lambda)} \int_{\lambda}^{\infty} f(s, 1, 1, 0, 0) ds\right) d\lambda < \frac{1}{2} \text{ for } t \ge t_{1}$$

It follows that

$$\frac{1}{2} \le y_1(t) < 1 \text{ for } t \ge t_1$$
 (6)

From (iii), there exists $t_2 \ge a$ such that

$$0 < y_1'(t) < 1 \text{ for } t \ge t_2$$
 (7)

From (4), (5), (6), (7) and Condition (ii) we have

$$y_2(t) = 1 - \int_{1}^{\infty} g^{-1} \left\{ \int_{1}^{\infty} f(s, y_1(s), y_1(p(s)), y_1'(s), y_1'(q(s))) ds \right\} d\lambda$$

$$\leq 1 - \int_{t}^{\infty} g^{-1} \left(\int_{\lambda}^{\infty} f(s, \frac{1}{2}, \frac{1}{2}, 0, 0) ds \right) d\lambda,$$

$$y'_{2}(t) = g^{-1} \left(\int_{t}^{\infty} f(s, y_{1}(s), y_{1}(p(s)), y'_{1}(s), y'_{1}(q(s))) ds \right)$$

$$\leq g^{-1} (\int_{t}^{\infty} f(s,1,1,1,1) ds)$$
.

From conditions (iii) and (iv), we know that there is $T > t_1$ such that

$$\frac{1}{2} \le y_2(t) < 1$$
, $0 < y_2'(t) < 1$ for $t > T$.

By mathematical induction we have

$$\frac{1}{2} \le y_n(t) < 1$$
, $0 < y'_n(t) < 1$, $n = 1, 2, \dots$

Thus the sequence $\{y_n(t)\}$ is equicontinuous and Uniformly bounded for $t \ge T$, and then there exists a convergent subsequence $\{y_{n_k}(t)\}$. Let its limit function is y(t), then

$$\frac{1}{2} \le y(t) \le 1$$
 and $0 \le y(t) \le 1$ for $t \ge T$.

Therefore, y(t) is bounded increasing for $t \ge T$. Obviously y(t) satisfies the equation (3) and the equation (1) for $t \ge T$. This completes the proof.

References

- [1] Zhang, B. G., Oscillation and nonoscillation for secondorder functional differential equations, Chinese Annals of Mathematics, 1(1981), 25-32.
- (2) Waltman, P., A note on an oscillation criterion for an equation with a functional argument, Canad. Math. Bull., 11 (1968), 593 -595.
- (3) Шевело, В. Н., Одзрий, О. Н., Некоторье вопросы теории осциляции (неосцилляцин) Решений Диффенцальных уравнений второго Порядка с заладывающим аргументом, Укр. Мат. Журн., 23 (1971), 503—516.
- [4] Chiou, K. L., Oscillation and nonoscillation theorem for socond order functional differential equation, J. Math. Anal. Appl., 45 (1974), 382 -403.
- [5] Dahiya, R. S. and Singh, B., On the oscillation of a second order delay equations, J. Math. Anal. Appl., 48 (1974), 610 -617.
- [6] G. C. T. Kung, Oscillation and nonoscillation of differential equation with a time lag, SIAM J. Appl. Math. 21 (1971), 203 -213.
- [7] Staikos, V. A. and Petsonlas, A. G., Some oscillation criteria for second nonlinear delag differential equations, J. Math. Anal. Appl. 30(1970), 695-701.0