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Abstract

The purpose of this paper is to give some sufficient conditions on f and
g for ensuring that all solutions or all bounded solutions of general second
order functional differential equation
rdg aNY + £,y @) y@a)N,y &),y (@u))=0
are oscillatory, or it has at least one bounded nonoscillatory solution.

I. Introduction

The paper deals with the oscillation and nonoscillation of a class of gen-

eral second order functional differential equations

(r)ey aNY + U, y@), y(pu)), ¥y ),y (g)IN=0 (1)
where r(tr), p(t), g(t) are continuous functions mapping R,=(e,>) into R,
ra)>0if r>a and p(t)—>oo, g(t)>o as t—»>o0, g: R—~ R, is a continuous
increasing function, g@0)= 0, f(,u,v,w, z) mapping R, X R* into R is con-
tinuous .

In this paper, we assume that every solution y of (1) exists in (t,,o0),
where t,>a. A solution y (r) is called oscillation if its zero points is unboun-
ded in [(t, ,o0).

Equation (1) is a class of general equation, it contains the equation

Cr)y (1O + fU,y@)ypa),y @),y (@)= 10
which was dealed with by many papers.

The purpose of this paper are to give some sufficient conditions on f and
g for ensuring that all solutions or all bounded solutiqns of (1 ) are oscillat
ory, or (1) has at least one bounded nonoscillatory solution.

II. Oscillation

* Received May, 17,1987.
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Theorem 1| . Suppose that the following conditions hold for 7>a >0,
(i) ufet,u,p,w,z)>0 as uv>0,
(ii) if y(r) is a positive increasing (or negative decreasing) function,
then
fa,y @),y (@), y ),y (g @)X =oo(or—o0),
(iii) for any conétam c>0, we have
j(ngl( rii )dt = too,

then every solution of (1 ) is oscillatory.

Proof. If the conclusion is not true, there exits a nonoscillatory solution
y(t)of (1). We may assume that y(t)>0 and y(p())>0 for t>T>a
without loss of generality. From (i), we have f(,y(),y(p@),y @),y (q
ad))>0 for r>T and then (r()g(y (t))Y <0 and r(t)g(y (¢)) is decreas-
ing for ¢t >71, therefore, we have tow cases to discuss,

Case 1. r(t)g(y ¢»>0 for t >T.

According to r(+)>0 and g(3/ ¢))>0 for r>T, we know that y (¢)>0
for t>T and y (¢) is positive increasing in (T, oo), Integrating (1) from T
to + >T we have

r(e)gy aN-rTMg (¥ a4 N= —f;,f'(s,y(s),y(p(s)),y/ (s),¥" (g(s))ds.

Notice condition (ii), we get r (t)g(y )< 0 for r sufficiently large from
above formula. This is a contradiction.
Case 2. There exists T, >T such that r(t)g(y (¢ )<0 for t>T,.
Since r(t)g(y’ (¢)) decrease, we get
r()gy enN<rTyey Ty for 1 >T,.

Then,
, - (TDEW T
v o< (FEREI),
¢ oy, r (T, ey (T,
y(t)<y(T|)+fTIg ( (5 )qs.

From (iii), we get yp()<0 for r sufficiently large. This is a contradiction
to y(t)>90. 7

If y¢)<0 for +>T, we can get a similar argument. This completes
the proof.

Theorem 1 generalize the theorem 1 of paper (1 J beeause the condition
HI of Theorem1 in (1 ] is equivalent to the condition (ii).

Theorem 2. Suppose that the condition (i) and (ii) of Theorem 1 hold,
r(t) and g(x) are differentiable, r ()<< 0 for r>a,g (x)> 0, then every
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solution of (1) is osillatory.
Proof. If y(r) is a nonoscillatory solution of (1), let y(t)> 0, y(pa»N>0
for r2>T>a. Then [(r(t)g(y tNY <0 and r(r)g(y (1)) is decreasing
for +r>T. Now, there are two cases to discuss as Theorem 1.
Case 1. r()e(y atnN>0 for ¢t >7T.
It follows that y' (r)>0 and y(r) is positive increasing for ¢t >T. As
the argument in Theorem 1 we can get 3 (1)< 0 for ¢ >T. This derives a
contradiction to case 1.
Case 2. There exist T,>> T such that r@)g(y »<0 for ¢>T,.
It follows that y' (1)<<0 for r=>T,. From (r(t)g(y (+)) < 0 we have
rgy antrarg O @)y <0 (=T,
Then,
- ra )
YOS
Consider r (+1)< 0 and g (x)>>0, we get y" ()< 0 for t>T,. It follows
that y(r) is decreasing and its curve is convex. So y(r) is decreasing and

(t>T)).

its curve is convex. So y(r) must be ne;gative for ¢ is sufficiently large.
This' contradicts y (1 y> 0.,
If ya)>~ 0 for t+>T—>a, we can get the similar contradiction.
Theorem 3. If the following conditions hold,
CiYufu,o,w,z) 0 if uv>0, t>a;

(ii) r(t)—>oo as t >0 andf}g“'l(r(cs)

ds=o0 +sgn ¢, where cis a

arbitrary constant;

(ii1) for any positive increasing function y(t)'zmd any constant ¢>0,
or for any negative decreasing function y(t) and any constant ¢ <0, we
have

f:(t “ T ULy @),y (N, Y (et >e [ radr
Jr

Then every solution of (1) oscillates,

Proof. Suppose that y)>- 0, y(pt)_ 0 for t_>>T>a, then
rigy ) is décreasing for ¢+ - T. There are two cases,

Case 1. r(t)g(y ) >0 tor ¢t >T.

In this case, we get that " (r).>0 and y(t) is increasing for r>T.
Integrating (1) form A>T to r >4 we get

rgy aN-rdgu @ ))+f;f(s,y(s), y@G)», ¥y (s),y (gis))ds=10
Then rA)g(y/ (l))>f;f(s,y(s), yp (s, ¥y (), ¥ (g(s)ds, (2)
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Integrate the both sides of (2 ) form T to +<T and by part, we have
frr(l)g(y/ “ ))dl>fr A-THfA,yA),y (G ),y A,y (ga))Ndi 3)
T

On the other hand, because r(r)g (¥’ (t)) is positive and decreasing, the
limit lim r (¢)g () (¢)) is existent and finite, Notice condition (i) limrt)y=o

¢ oo o

we have lim g/ @))=0, then lim y ()= 0. Therefore, for any con-

;- r -

stant ¢ 0, there exists T,> T such that y (#)Za for t+>T, and then
g gy for 1 >T,. From (3 ) we have
g (a)J'; r(A)dz ]r G=TY A,y ),y (pAN, ¥y A,y (g@d)Hi.

this contradictec condition «iiv).

Case 2. r(t)g an<<0 for r>T,>T.

Using the argument in Theorem |1 we can get a contradiction.

If y@) is eventually negative we can use the similar argument to discuss.

The proof is completed.

Theorem 4 Suppose that the conditions (i) and (ii) of Theorem 1
hold. In addition, we assume that (ii) if y(r) is a positive increasing func
tion (or a negative decreasing function), then

R 1 ! ’ ’ —di= -
f g [r(,),Lf(s,)’(s),)’(l’(S)),y (s),y (g(s)HXs)=di= " (or—= ).

Then every bounded solution of (1) is oscillatory.

Proof. Let y(r) is a bounded nonoscillatory solution of (1) and y () >0,
vipuryy O for ¢ > T ca.

Then r(r)g«y (1)) is decreasing for r>T. There are two cases to
discuss .,

Case 1. r@)eg(y (¢))>0 for t>T.

In this case, y (+)>0 and y () is positive increasing for ¢ >7T . From
(2 ) we have

1

1 ! ’ ’
y (/1)>g*‘[r(“' _fif(s,y(s),y(p(s)),y (s),y (g (sAs), A>T, t >4.

Then

)~ y(T)>ng' ![—r‘(-lj‘)‘—jlf(S,Y(s),Y(P GV, ¥ ) (gsnxdsddl,  >T.

By the formula as above and condition (kii) we get that y(r )—>co as ¢ —+oo.
This is a contradiction to the boundeduess of y(r).

Case 2. r(1)g (Y @)N<0 for 1 >T,>T.
For this case, we can get a contradiction by the argument in theorem 1.
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We can prove that there exists a contradiction if y(r) eventually negative.

m. Nonoscillation

Theorem 5. If the fo owing conditions hold for > T >a,
CidYulaou, powezy 0 if up >0
(ii) f¢,u,0,w, z) is increasing with respect to wu,p,w, z if u,p,w, z are
nonnegative;
(iii) for any a >0 and b>0, we have
g 'r r(’)j f(s,a,a,b,b)ds}>0 as oo,

(iv) for any a -0, we have

-
jTg r(t)[ f(s,a,a,0,0)ds)dr - .

Then (1) has at least a bounded increasing solution.
Proof. Consider the integral equation

yar=1 -[ g ' f,'f(s,y(s),y(p(S)),y’ (s),¥" (q (s))ds]dA. (4)

(/1)
Obviously, its solution satisfies (1 ).
Set y,(1)=1

E l x , ,
y,,(t)=l'f’g l[r(l)j,: Sy, (), y, (P, Y, ((s),y, ,(g(s)ds)di,

no 2y e, (5)
Then

B =1 —f}"[,a) Jres,1,1,0,00ds304,

Yit)=g"! ff<s1 1,0,0)ds .

r (t)
From (iv), there exists f,->a¢ such that

oo_l 1 el L
f’g [r(l)Lf(s,l,l,O,O)ds]dl<2 for r>1,
It follows that
'—<§_,yl(t)<l for t>1, (6)

From (iii), there exists t,>>a¢ such that
0 <y; (1)1 for t>1t, ' (7)
From (4), (5), (6), (7) and Condition (ii) we have

y2@)=1=["g7C[ T, 31 )2 (2,1 (3,71 (g (5)))ds)dR
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<1 —J\oz’rltj‘:of(s9—;_’ —%-90’0 )ds Jd4,
Yr@)= 80 S (5,31 ()30 (25D, ¥ (9, ¥4 (g (5)))ds)

<e '(f Fes,1,1,1, 105
From conditions (iii) and (iv), we know that there is T>¢, such that
%_<_y2(t)<1, 0<yo)<1 for r>T.
By mathematical induction we have
-;:—éy,,(t)<1, 0<y, (1)< 1, n=1,2,

Thus the sequence{y,(t)} is equicontinuoue and Uniformly bounded for r>T,
and then there exists a convergent subsequence {ynk (t)}. Let its limit func-
tion is y(r), then

-;—gy(t)gl and 0<y)<1 for t>T.

Therefore, y(t) is bounded increasing for r>7T. Obviously y () satisfies the
equation (3 ) and the equation (1) for ¢>7T. This completes the proof.
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