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A Free Boundary Problem for ODE

Arising from Degenerate Parabolic Equations*

Yan Zigian (® 3 # )

(Jilin University, changchun, china)

Abstract Assume BeC[(, +o0) [ )C' (0, +o0) and B (p) is strictly increasing
-and concave, That the free boundary Problem for ODE

I/”:”—%—ftB (@) for $4,, o ({)=0,

v (&) = ——Z—zo, limp(¢) = B,

has a unique solution (»($), ¢,) w_ith ol - (%ﬁ)* /2,0) is proved. This problem

arises, for example, from the investigation of the structure of discontinuous solu

2
(
tions for degenerdte parabolic equatlons like aa'; O_EA;u_)__
X

I.Introduction
Vol’pert A.1. and Hudjaev S.I. [ 1] indicated that a solution of the Cauchy

problem for degenerate parabolic equations of the form
- 24 () for xe¢R and 9,

(1.1 3’ 0x?

ul,_,=u,(x) for xeR
with 4" (u) = alu) >0 may be discontinuous somewhere. Wu Zhuoqu;rl_’,[ 2 ] showed
that under the assumptions that
) a(u)=0 for u<<0 and aCu) >~ for u> 0,
{uo (x) <0 for x<0 and uy{(x) -0 for x™0,

the problem (l.i) can be reduced to the following free boundary problem

2
du _ 0°A (u) for x> A(1),

or dx?

u,x X(IFO’

(1.2y aA(u)i

il =uy (A1) A (1),

ul,_o=uy(x) for x>0

where x=4(r), with 41(0) =0 and 1’ (#) <0, is the line of discontinuity of a

* Received May 3,1986.
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- solution u to (1.1). If, in addition, .
uy(x) = —a for x<0 and u,(x) =p for x 0,
with positive constants ¢ and B, then, seeking similarity solutions of (1.,2) trans-

forms it into the free boundary problem for ODE.
" = _%g[n(w]’ for £ ¢,

1)(;0) = 0,

(1.3)
l}/(go) = —%go’

limo($)=40H),

where ¢{=x/J71, y(§)‘=A(u-(§)) and B (p) is the tnverse function of A (u) for
u 0. In [ 2], Wu concentrated on the special case
Auy=0 for u<0 and A(u) =u" for u> ¢

with m -1, and proved the existence and uniquenss of solutions to (1.3).

What we want to do in this paper is to generalize the above result to the
case of more general A4 (u). Precisely, we assume that 4eC(-oo, +o0), A (u)
=0 when u< (0 and A (u) is continuousiy differentiable, strictly increasing and
convex for « ~ (. Obviously, this implies that B, as the inverse of A, satisfies
the condition,

BeC[Q, +oo)(1Cl(p, +oc: with B(0) =0 and B (p) is

(b strictly increasing and concave.
In section 3 it is under the condition (1,4 thet we prove the existence and
uniqueness result for (1.3). As a preliminary, Cauchy problems related to (1.3)

are studied in greater detail in section 2.

Exambple
) for u<Q, ) for u<(
A (w)= s \ and A(u) {
Lu” for u™ 0, ” ln(lru) for u >0,
with m.-) setisfy the assumption stated above. ' .

II. Relgyant Cauchy problems
This section is devoted to the Cauchy problems of the form

1

e (B for & g,
(2.1 J 2*
1,;_{(.) Sd. b iy b
where ¢, u, b aie constants with ¢, 0 and a, b >0.
Theorem 2.1 Assume that BeCia, + <) 1C'(a, + o0) and B(p) is an incre-
asing and concave tunction. Then (2.1 has a unique solutica 2¢C'[&,, +o0)] |

C gy, o),

Proof It is easyto see that to seck a sviution to (2,1) equals to find a

- o&()—
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continuous function p satisfying the integral equation

(2.2) v($) =a+b({-5,) +¥.£— [':(é—zfz)'B(u(fyndn for ¢ ¢,
or equivalently,
g ! 1 n R

(2.3) 2§ =a+b[ expl-—[ (B (w&)Hddn for & ¢,
Define '

Q={(peCl&, 00 a+bg-¢y) 0(&) a+b (8 -£&,)1,
where
(2.4) b’zbexp[%d(B(aer Sob - Ban].

It is clear that Q is a closed convex set in C[¢,,0]. Introduce an operator T,
Q—>C[¢,,0] by assigning '

5

$ n '
W(§)ET0(§)Ea+bL exp[*—;AJ‘t CB (p(£))dg)dn for £, ¢< 0.
Since B’ is nonnegative and nonincreasing, we have
L (5, p :
b<iw’ (&) = bexpl - —,;—L ¢B' (9(£))dg )< b

and hence ,

a<la+ b(s— &) <wig)<a+ b (&-¢g)<a+b'|&].
tor any p¢Q and any ¢e€[&y,0]. This means that T (Q)CQ and that, by the
Alzera. lemma, T (Q) is a precompéct set in C[¢,,0]. In addition, BeC[a, + o)
(C! (a, + =) ensures the continuity of T. Thus, Schauder’s fixed point theorem
gives that the integral equation (2.3) has at least one solution defined on the
interval | ¢,,0]. It is easy to see that this solution can be continued to [&o, +00).
The exisicuce of solutions to (2.1) is thus p'roved. '

To show the uniqueness of solutions, let 2, (¢) and »,(£) be two solutions

of (2.1), and write '

E=supié>&o: 0, () =02(n) for Lo<n<i).
It suffices to confirm &= +oo. If < +00, (&), i=1,2, could have the follo-

wWing expressious

_ _ —. ¢ - -
(2.5) 06 =0 (D) o) D e[ (2B for ¢,
and ‘ A
) = _ ¢ 1" , . _
(2.6) v, (¢ =0,($) +v{(§)f‘rexp[—7ff58 (9;())d¢1dn for & =4.
é

Set v(3) =, (¢) -v,(s). From (2.5) we get

L o v(8) IE—J_(é—Zn"v(rz-)dnj B (v, (n)+ (1 - Do, 0n)dr for g «¢
¢ L

81 -
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since », (&) =0,(&), v/ (&) =0,(&). From (2.6) and
o (&) = bexp[—%ff ¢B (2,($)d¢) >,

we see that
2,(E)>0,(E)  for ¢=¢.
By (2.3
v, ($) =a+ b($—¢y) for < d=<0.
Hence (2.7) implies that, for any 6 >0 small and for any geLg_,f+ 57,
lo (&) |‘\<—21—J";|§—2'7|di78’(vl (&)) max |o({)]

$eig<ig+s

<8 0 () (E]+0)8 max ()] if ¢ ¢,

[ LR
or
lo(¢) |< <|;0|+6>j B (a+b(y- ¢)dn max lo (&) |
£, <LsIE, 0
<l;|+a)[3(a+ba) B(a)) max [p(0)] if £=¢,
2b b <L, + b

This is impossible for 6 small enough. Thus §: +oo, i.e., v (&) =p, (&) for all
$>¢,.

Now we cliscuss some properties of solutions to (2,1), which will be used
in section 3. First we have

Theorem 2.2 Let 2¢C![,, +O°)QCZ(¢0, +o0) be a solution of (2.1) with
$0<<0, a>>0,b>0 and B’ (p)>0. Then v is an strictly mcreasmg function with »’
increasing on [¢,, 0] and decreasing on [0, +oc). In addition,

(2.8) alv($H<<a+b ({-4y) for =4
where b’ is given in (2.4).

Proof From (2.3) we see that
v(s) :bexp[—%f; nB (v(n))dnl =0 for {>¢,

and from (2.1) we obtain ¢2”(£)<20 for ¢ &,. This implies the first part of the
theorem and »(¢) >a.
For §0<§<0,*frbm (2.3) we get
(&) <La+ b (& &)
For ¢£™>9¢
p(&) =a+ b(f f)exp[——f (B (v(c’))ds’]drl

<La+b ' (-¢&) +bjexp[——<j j)gzz (u<g>>d;jdn
I
<a-b'g, +b/jexp[——j53 <u<zndgjd;7<a+b/<§ &)

— 582 —
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Hence (2.8) is true.

From now on we denote by »({;¢,,a,b) the solution of the problem (2.1).

Theorem 2.3 Assume thet BeC[(, +o0)C!' (0, + o) and B(p) is an incre-
asing and concave function. Then »({; ¢, a, b) depends continuously on ¢,<0,
a>0 and b,

Proof Fixing ¢{,<0,4>0 and b>>(0,we want to prove

v(¢3&,a,b) »0(é5¢&,,a,b)  for ¢ ¢,

when £,<0,a>0,b>0,and &,—~¢,, a>a, b—~b.It suffices to show that for any
$,>0,any 6> small and for ¢, +J<(¢<{,
(2.9) V(&5 80ns Ay b)) >0($3580,a,b)
when 'fo,,—f o!<5’ $on<0,a,>0,b,>0 and ¢{,,>¢,,a,>a,b,~b.

By (2.2) we have, for ¢{>¢,,,

I3
(2.10)  0(&3 ¢y, a,,b,) =a,+b,(£- &) +~?{—L (&-20) B (2N €4,y apy b)) dn

‘ v ¢
D/("f; §0n’an’bn) = b"——é_gB (v(<s gOn, Ay bn))"'"é—fg B(U(’“;o"’ Ay bn))d”'

Applying Theorem 2.2 to (<5 ¢4,, Qn b,,),vs‘/e get
0<an<v(§; g()n, an’ bn)gan'%b;l(;l —§0n)’

: . | ! /
and 0’ ({5 ;0::, an’bn)\<0/(0; gOn, Any bn)<b,,+'_|gﬂ"l"8 (a,,+ b,,(';l - go,,)')

2
where b;:b"exp[—%l(l}(a"-f- boléoal) — B (a,))]). It is clear that for n large enough

(¢35 &0ny anby) and v/ (&5 Eony @n, ba) are uniformly bounded on (& + 5, &), Accor-

ding to the Alzera lemma, there exists a subsequence {n,} such that »(¢;5 &on, s

Qn,, bn,) uniformly converges to some continuous function w({) . Letting k— + o
in (2.10) with n, in place of n we see that

g«,
W) =arb(&—¢o) +4[ (£-2m B wn)dn,

which means that w(¢) satisfies (2.1). By uniqueness and its proof, w (<) =»({;
$osa,b) and (2.9) holds.

Theorerh 2.4 Under the assumption of Theorem 2.3, if ¢,,<¢£,<C0, a,>>a,
>0, by>b,>0, and |¢,o] +a, +b,>>|¢y|+a,+ by,

then

(2.11) v($3 &0y @ys b)) >0 (&5 Sy ayy by) for $2244,.
Proof Let us first consider the case .

(2.12) $10=€0=60<<0, a,>a,>0,b,=b,=b>0

and write

U(gig()’ai’b) =Ui(§), l'=-1,2.
From ¢, ({y) =a,>>a,=2,($,) and the continuity of »,({) it follows that

— 583 —
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() 0,(¢) for $y<. &~ $y+d and 6> 0 small. 5
Suppose that (2.11) were not true, there would be fe [y +d, +o0) such thut
b (&) vy (&) for &y ¢ & and o, (§) =0,(&) .
But, by the monotonity of B and B’, we have
1r¢

p (&) =a,+b(&E~¢&)) + 7).,

(=21 B (v, (1))dy

_ P }
Caprb(E- 2y vy, (F-2m B, n)dn=0,(8)
if £<0 and
Y ’ [ 1 g ’
0 (9 =0,(0) +5{(0) [ expl 5[ (B (3 (£))d¢)dr

/ 7 L 7
> 0,(0) +uz(0)foexpt——2—f0§B’(vz (£))ddlidn =0, (£)
if $>0 since »,(0) ~0,(0) and »{(0) >2;(0) >0. This contradicts 2, () =2,({) .
Therefore (2.11) holds in the case of (2.12).
By using the saime argument we can prove (2,11) for the case
S10=¢20<0, a;=a,>0, b;>b,>0 .
Now we assnme

$10<E0<0, a=0, b> 0.
By (2.2),

. ;ZD .
p(fws S0, a,b) =a+b($xn- $10) +"%—J‘§ (£20—2m) B (0(n3 100 @5 b)) d=a">a,

* $20
V(&5 6105 @, 8) = b= F-¢20B (5(Ea0s €100, 0)) + o, B0 E10,a,0))dn=b">b.

In view of the uniqueness of solutions,
v($3$g,a,b)=0($38,,a ,b") for § .-y .
According to what have just been proved
2(§3 8105 a,b0) =0($s5659,a",b07) S0 (ds Gnea,b) for $>4y .
Il . Free boundary Problem
Let us back to the free boundary problem (1.3) and write § instead of
A (B) for simplicity, i.e., consider the problem
o= —%gwmj’ for ¢.-¢,,

(3.1) ) 2(p) =0,
D/ (§0) = —%;0’
limp (<) = B.
&>+ 00

Throughout this section B (y) is assumed to satisfy the condition
{3.2) BeCiw, - x){1C'(u, + <) is strictly increasing and concave. Applying
the results of the last section to the cauchy probiem

— 5R4—
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o= =B WY for ¢ &,
(3.3) (&) =0, ‘
11/<§0> - '%gu,

we get

Theorem 3.1 Under the condition /2.2), (3.3) has a unique solution
v=0v(gs {,,a), which depends continuously on ¢, 0 and ¢ 0, and strictly incre
ases with ¢, }fofand a.

If,in addition,
(3.4) limy’B’ (p) = + o0

p e

then there exists a positive constant M snch that

‘ %—IKOM—;O) for &, ¢+ 0,
(3.5) M>u(ss5,,a).

5< for ¢ 0.
Proof It remains to Show thet (3.5) is true if (3.2) and (3.4) hold.
From(2.3) with a=0 and b:—(zl—(.f(,f, we have .
a : 1 4 oB/ & ",‘
(3.6) y(§;§0,a):~2—|§(,ILU-€XP["E—_£“A (0($s5 €4, @))dS)dn.
Set
(1 h
3:7’§0(exp[—}1—<3(-%§5) - B0

and choose M = ( such that

A [ ) M.
(l§0‘+ B (M)

This is possible because of (3.4). It is easily seen from (3.6) that

(3.7 ”Lzl“goi (g—go)"/ﬂ(f? .{09 aj- /\‘fo'/M for stn : St 0.

When ¢ (¢ we have
(3.8) b(&3éa) (05 &,a) :»;i;g.
If there exists ¢, (0 such that
(¢ s, @) “ulé) M for {yod &, and (¢ = M,
then for 0-2¢ ¢,

ay, i < 1 ¢” ,
p(&) -7|$(,‘(L” +£l)exp[—-?f:n§B (2(&)rdedy

LA l'cf()l + Ajééexp[ - "41—‘3/ (M)Hn¥idy A (|§0] + \/_I}T(l/{'l-) )

which contradicts (¢ ) = M. This together with (3.7) and (3.8)gives

(3.5).
By Theorem 3.1, under the conditions (3.2 and (3,1,

—h85 —
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y($y,a) = limo($)

&> 400

is well defined on ¢,<C0 and a>(0, We are going to find a $o<C0 such that y (§0,
@) = B.For thiz ¢, the solution of (3.3) also solves (3.1).
To seek such a ¢,<C0, the following properties of » ({,, a) are crucial.

Theorem 3.2 Under the conditions (3.2) and (3.4),
i) llmv(§ $o0ra) = (£y, @) uniformly on = L<{,<0 and 0<{a,<la< a, for

~> OO
any positive L, a, and a,;

i) (S, G)>%§§ for any ¢,<0 and a>0;

iii) y (,, a) is continuous on ¢,<0 and ¢>0;

iv) If ¢,,<$5<0, ¢,>a,>0, €10l + @, |8 5] + @y, then p (&1g, @) > 2 (&g, @)

Proof It is easy to see form the proof of (3.5) that we can choose M ™ ( inde-
pendent of ¢, -L,0) and ac¢[a,,a,]. Hence, for {>0, we have

0<7 (£0s @) = 05 £, @) =ilfolf;xpt~if”§8’<u<; 40, @) d¢Jdn
<o-¢olexpC lg"'j B/(1¢0l (£ - £)) 44D [ expl~ 4B/ (M) n*Jdn

a 1. a ., ~nt
<T— exp(— - (B (—2—§0) - B (0 ]Le dn

<“—£—3XPEJ—(B( sz) -B (0))]f e-"dn
JB' (M) % ¢
which proves i).ii) follows frorn (3.5) .iii) is a consequence of Theorem 3.1 and

y. As for iv) we have

y(gloy al) =p(0s §109 (11) +D/(0§§10’ al)f exp[_“;_J;qu/(l)(gi §10, a1))d§jd”
0

0003 300 @) 005 300 @) [ expl R LA IT T RILISLUEIPRE

By Theorem 3.2, for fixed a> 0, y({,,a) is a strictly increasing and conti-

nuons function on ¢,<0 and

2B.1/2 a 28
V(—(—a‘) ,(1)>77—ﬁ.

In addition,

. g a|gor> 11", p .
limy($y, @) = lim 5 f;oexp[—TLos“B (0({3 44, a))dS Idm= 0.

$o—0" £y 0"

Hence, there exists a unique §oe(—(2ﬂ 12
y(;o, a) - ﬂ
In other words, (#({;5$,a),¢,) is the unique solution of (3.1). If we change

,0) such that

— 586—
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notatieons and denote by(v($5a, B), &, (a, )) thc solution of (3.1), the results
that have just been obtained can be stated as

Theorem 3.3 Assume (3.2).For a,$>0, (3.1) has a unique solution (»

(;;a,/;), &, (a, B)) with $y(a, e - (2&/2)1/2, 0) and peC'[ &, +20) NC2(&,, +0),
Both v({;a, B) and ¢,(a, ) are continuous in a and B. »(S;a, ) strictly incre-
ases in ¢ and B. and ¢ (a, ) strictly in a and- 8.

Proof Under the additional restriction (3.4) it remains to verify the mono-
tonity of »({sa,B) and £,(a, ). By Theorem 3.2, for fixed a0, £, (a, f) as the
implicit function defined by y({,, @) = B is strictly decreasing in g, and for fixed
B> 0 it is strictly increasing in ¢. And hence »(¢;a, B) has the claimed monoto -
nity by Theorem3,1.

For general B (p) just satisfying (3,2), define

- B () for 0<p<p,
B(»)= { ,
B(p)y+B (B)v— p) for v> 8.
As has been proved, (3.1) with B () replaced byB (¢) has a unique solution
(0(£),£y) . Obviously, 0<o(£) < B. Therefore, (2(¢), <,) is also the unique solu
tion of (3.1) itself.
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