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The main purpose of this paper is to present pptimality conditions for the
Cu embedded problem.Given a convex set K containing the origin as one of its
interior points and a bounded feasible region S, this problem consists in finding the
Jargest convx bodies contained in S, associated with the Minkowski function
m(x ;K).This problem is related to the Design Centering problem studied by
Vidigal and Director (1982) et al.We do not suppose that bdS, the boundary
of S, is defined by convex or concave functions but only by C? functions and
we assume that the constrained functions are known explicitly.

Generally speaking, in this kind of problem the subnorm is used, defined by
a non-negative real-valued function with sublinear,but for the sake of simpli-
city the discussion here will be confined to the case where K is the unit Euc-
lidean ball B(0.1).Some new optimality conditions vill be proposed in this
situation, that is,when Minkowski function coincides with the Euclidean norm H“

Let S be the set defined by !x eR"[f (x) i€ whereQ={] «+, m!,
f,€ C’and flare constant for ; € Q. For each i €Q, we consider the set Dié\iy €
R[] = and fj(y)<f% CQ\HH and we assume that S is bounded,simply
connected and that S/f, (») #0 for each yeD;bd S,ie Q. Let SCint S be
closed and sufficiently close to S. Then the C, -embedded problem can be

formulated as follows:

max min min ||x— y“z. 1)
. x€S i€Q yeDS
It is equivalent to
max r
Xs F

subjeCI to fi (x+ wr)<f?,l€ Q, WGB(O.1)9
Vidigal et al. (1982). . *

It is necessary to introduce an auxiliaryY function
(xS = Toieam (O - i |3

"Received July30, |986. — 613—

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



wnere ¢el,I being a bounded interval,u€ X, oD, and the function @ (&) is
defined by (1/a) Il eq ;i (£~ D,where ai=11 jeq , (i-P=C(-1)" G- 1!
(m-1)tsdue to Demyanov (1968).The function ¥ is continuously differentiable
on R Rx R "™ and the restriction of ¥(x,¢,n) to Sx Qx X e oD can be viewed
as ¥(x,{, )= [Ix-y|? for yE D,;,{€ Q, xE€S.

In the sequel we denote by #:R">R the function defined for each x€S

\ N N A R
by @(x)ZEmin min |x-y]|? and we define to each x€ S the sets Q(x) £ (i€
i€eQyeD, (S

Q| o(x) = énDinFS Il x-vy|% and Y(x)2{y€Ebd S| #(x)= |x-y|? .Finally we
ot

denote by G(x; Q) the set x-Q and by N (x;Q) the cone !h€ R"| <u, h>0,
u€ G(x;Q)).According to Demyanov et al. (1981, 1983) and Polak et al.
(1979), we obtain the following characterization of p.

Proposition |. The function ¢ is quasidifferentiable, especially superdiffer-
entiable in /S\ in the sense of Demyanov and Rubinov and the superdifferential
of ¢ at xE§ is dp(x) =co2 (x-y(x)). Moreover ¢ is semi-smooth in the sense
of Mifflin. []

From this proposition it follows that

N (x;Y(x))={h€ER"|<w,h>>0,wE dp(x)]}.

By Demyanov (1981, 1983) and Polyakova (1981),a necessary condition for
(1) is 0€ d9(x*).This condition is equivalent to 0€ co(x* - Y(x*))or still to
dim L), 70, where CA means the conical hull of A and <L )”

the lineality space of (-),Stoer (1970) and Rockafellar (1970).

The following sufficient condition can be proved from Mifflin (1977),Leb-
ourg (1975) and Polak (1979).

Theorem?2. If x& S satisfies the condition N™ (x;Y(x))= {0} then x is a

means

locally optimal solution to (1 ). In particular this sufficient condition holds
when Y(x) Nint {CG(x;Q)+ x} #+Z for some QCY(x). []

At this moment it must be mentioned that this sufficient condition is still
true for more general cases.Note that if ¢ (x;h) = ¢ (x;h), he R", then the
proof for the theorem above can be simplified.

In order to discuss further optimality conditions, we begin by classifying
the points of Y(x) and afterwards the points x€ int S.

A SP(y) B means that sets A and B can be separated by some hyperplane
H(y) at the point y.A SS(y) B means that A and B are in the same closed
half space determined by a supporting hyperplane H(y) of A and B at yeg A
MNB. H(y; Vf; (y),>) and H(y; Vf; (y), <) denote positive and negative open-
half space, respectively, determined by Vi, (y) at y.Define

POEIyEY (0 | 3 e(y)>0:B(x, (x)') SP(»U ,,,, (y) (bd S},
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P2 yey ) | 3e(y)>0:B(x, 0(x)1?) SS(y)U, ,,(y)(1bd S},

PO IyEY (x) | ¥&>0:U,(¥) Nbd SNH(y; Vi (), >)# o

and U,(Y) Mbd SNH (y; Vf; (y),<)*, for some i€ Q(x)

such that
ly-x|*= e,
fi (y)=1;,
f; ()<f;,j €Q\Ui}},

and
P ={yeEYX) | ¥&£0:U,(¥)NbdS B(x, 9(x))\(y} 7

;and B(x, 9(x)'"HSS(y) U,(¥y)Nbd S}.

In other words,y € Y (x) is said to be in \l;(x)if there exist a neighborhood
U¢y) (y) of y and a hyperplane H passing through y such that

B(x, 9(x)"%) and U, ,,(y)(bd S can be separated by H. (2)
For example,if f; is concave and yeg D; S, then ye\l;(x).ln a similar way,
y is said to be in 'I;(x) if condition (2 ) is replaced by B (x, 9(x) l/2) and
U, (¥Y)MNbd S are in the same closed half space determined by H. Fer exam-
ple, if f; is convex and yeD;[()S, then ng(x) A point x 1s said to be a
V-point (A-point respectively) if x€int S and P(x)‘zY(x) (P(x) =Y (X)
respectively) . Finally a\/ or A -point x is called strict if

B(x, 2(x) ") NU, (,, (y)Nbd S={y}. (3)

Theorem3. Suppose x is a strict \/-point.Then x is a locally optimal
solution to (1) if and only if N (x;Y(x))={0).[

Concerning the set P(x) and the A -points, we the next results.

Proposition 4. If each y€ P(x) satisfies (3) ,then the condition dim
Lcxp (xn?0 is a sufficient one for x to be a locally optimal solution to (1).[]

Theorem 5. Suppose x is a /A -point, Then x is a locally optimal solution
to (1) if and only if dim N'(x; Y(x))£n. []

In the general situation the main trouble is that it is possible that although
the norm boby is not able to expand in a straight line, it can be able to
expand in a curvilinear path, The general optimality condition can be describ-
ed as follows,

Theorem 8. A point x€ int S is a strictly locally optimal solution to (1)
if and only if there exists a neighborhood U (x) such that

N (Di+ |x-y |B,DINUME =D, (4)
yi € Y (X)
If each function f; is approximated by its second-order Taylor expansion, thenc4)
becomes more tractable and can be written as

N {z|2Vf (yDT(z-x) + (x-2)H,, (z- x)<0} NUx)=Z.
y,GY(x) N
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Th.3 and Th.5 have been found out exactly for the c¢cy-embedded probl-
em (1) . They can be used to verify if a point found out by any technique is
a solution to (1) associated with the non-convex regions mentioned in the
corresponding theorems.

Finally it remains to analyse the local behavior of the boundary at a point
in order to identify if yE/l\’(x) or T’Kx).This can be done with the aid of
quadratic approximations as descrided in the last proposmon

Proposition 7. Suppose YEY (x).If yEP(x) (P(x)) then there exists a neigh-
borhood U(y)such that g(yr)\() (>0), for each yTETf (y) ﬂU(y),Where A(yT
Q“(y-/;—y)TH (y}-y)/ @ vy I and Tf(y) denotes the tangent plane to f at y.
f at y.Conversely, if there exnsts U (y) such that A(yT) >0 (\0) for each yT
€Tf (y) NU(y) then yEP(x) (P(x)) L]

Some corresponding algorithms are omitted here.
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